Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
: A B C N M G
Ta thấy: cạnh AN bằng 1/2 cạnh AC và chung chiều cao từ A kéo xuống AC
Nên diện tích hình tam giác ANC là:
860:2=430(cm vuông)
Ta thấy:CMN cũng như vậy nên diện tích hình tam giác CMN là:
430:2=215(cm vuông)
Đáp số:215 cm vuông.
Các bạn hiểu không.Thầy giáo mình giạy là:Nếu hình tam giác mà chung chiều cao và đáy bằng bao nhiêu phần đáy kia thì diện tích bằng mấy phần diện tích hình to.
À nhân tiện cho mình hỏi, nối A với K. So sánh SKBC với SAKB và tính SKBC
Tham khảo
Đáp án:
Có: AMMB=ANNAAMMB=ANNA
=> MN//BC (theo đl ta-lét đảo)
Vì: MK//BI(cmt)
=> MKBI=AKAIMKBI=AKAI (theo đl ta lét) (1)
Vì: KN//IC(cmt)
=> NKIC=AKAINKIC=AKAI (thep đl ta lét) (2)
Từ (1)(2) suy ra: MKBI=NKICMKBI=NKIC
Mà BI=IC(gt)
=> MK=NK
=> K là trung điểm của MN
TTôi từng nghe:Trong "Principia Mathematica" của Bertrand Russell và Alfred North Whitehead, việc chứng minh 1 + 1 = 2 mất khoảng 362 trang. Đây là một phần của nỗ lực xây dựng toán học dựa trên logic hình thức. Chứng minh này phản ánh sự phức tạp của các định nghĩa và tiên đề trong lý thuyết tập hợp và số học. Nếu bạn cần thêm thông tin về nội dung cụ thể, hãy cho tôi biết! Chứng minh 1 + 1 = 2 trong "Principia Mathematica" được xem là khó khăn vì nó yêu cầu hiểu biết sâu sắc về logic hình thức và các định nghĩa phức tạp. Mặc dù kết quả cuối cùng có vẻ đơn giản, quá trình chứng minh đòi hỏi nhiều bước logic và khái niệm toán học. Nếu bạn không quen với lý thuyết này, nó có thể khá trừu tượng và khó tiếp cận.
Tôi từng nghe:Trong "Principia Mathematica" của Bertrand Russell và Alfred North Whitehead, việc chứng minh 1 + 1 = 2 mất khoảng 362 trang. Đây là một phần của nỗ lực xây dựng toán học dựa trên logic hình thức. Chứng minh này phản ánh sự phức tạp của các định nghĩa và tiên đề trong lý thuyết tập hợp và số học. Nếu bạn cần thêm thông tin về nội dung cụ thể, hãy cho tôi biết! Chứng minh 1 + 1 = 2 trong "Principia Mathematica" được xem là khó khăn vì nó yêu cầu hiểu biết sâu sắc về logic hình thức và các định nghĩa phức tạp. Mặc dù kết quả cuối cùng có vẻ đơn giản, quá trình chứng minh đòi hỏi nhiều bước logic và khái niệm toán học. Nếu bạn không quen với lý thuyết này, nó có thể khá trừu tượng và khó tiếp cận.