K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

a. vì tam giác ABC cân tại A

=> AB = AC 

=> góc ABC = góc ACB

    BM và CN là 2 đường trung tuyến của tam giác ABC

=> N và M lần lượt là trung điểm của AB và AC

=> AN = BN

     AM = CM

mà AB = AC

=> AN = BN = AM = CM

  Xét tam giác BNC và tam giác CMB:

  BC chung

  góc ABC = góc ACB (cmt)

  BN = CM (cmt)

=>  tam giác BNC = tam giác CMB (c-g-c) (đpcm)

b. tam giác BNC = tam giác CMB (cmt)

=> BM = CN ( 2 cạnh tương ứng)

mà BM giao CN tại K

=> K là trọng tâm của tam giác ABC

=> BK = CK

   Xét Δ AKB và Δ AKC:

 AK chung

 AB = AC (cmt)

 BK = CK (cmt)

=> Δ AKB = Δ AKC (c-c-c)

=> góc BAK = góc CAK (2 góc tương ứng)

=> AK là tia phân giác góc BAC

=> AK là đường trung trực của Δ ABC

=> AK ⊥ BC (đpcm)

c. Vì AK (AH) ⊥ BC

 => tam giác ABH vuông tại H

mà AH là đường trung trực của tam giác ABC

=> BH = CH = \(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)

Áp dùng định lí Py - ta - go vào tam giác ABH:

 AB2 = BH2 + AH2

 52    =  32   + AH2

AH2  =  52 - 32 = 25 - 9 = 16

=> AK = 4cm (AH > 0) 

8 tháng 5 2022

giúp vs chứ mai thi r !!!

 

8 tháng 4 2016

A B C M N K

a. Ta xét \(\Delta BCNvà\Delta CMB\)

có BC chung

góc B = góc C ( Hai góc ở đáy của tam giác cân)

BN = CM ( BN=\(\frac{1}{2}AB=\frac{1}{2}AC=CM\)

Suy ra tam giác BCN = tam giác CMB ( C-G-C)

b. Ta có tam giác BCN = tam giác CMB

suy ra góc BCN = góc CBM ( hai góc tương ứng)

tam giác BKC có góc KBC= góc KCB nên tam giác BKC cân tại K

c. Xét \(\Delta BKC\)

có BC< KB + KC ( BĐT tam giác) (1)

mà BK = 2.KM, CK = 2.KN mà BK= CK, KM =KN (2)

từ (1) và (2) suy ra BC < KB +KC =4.KM

Vậy BC < 4.KM

13 tháng 7 2017

viết giả thiết kết luận kiểu vay m.n

16 tháng 6 2020

C) MN // BC

o l m . v n

a, tam giác ABC cân tại A (gt)

=> AB = AC (Đn)

có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)

=> AN = AM = BN = CM 

xét tam giác NBC và tam giác MCB có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (Gt)

=> tam giác NBC = tam giác MCB (c-g-c)                 (1)

b, (1) => ^KBC = ^KCB (đn)

=> tam giác KBC cân tại K (dh)

c, có tam giác ABC cân tại A (gt)  => ^ABC = (180 - ^BAC) : 2 (tc)

có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)

=> ^ABC = ^ANM mà 2 góc này đồng vị

=> MN // BC (đl)

20 tháng 2 2024

phải là 1/2 AB

26 tháng 4 2018

a) Ta có: ΔABC cân tại A

Nên: AB=AC

Mà: CN là đường trung tuyến => NB=NA

       BM là đường trung tuyến => MA=MC

Suy ra: NB=NA=MA=MC

Xét ΔBNC và ΔCMB

Có: BN=CM (cmt)

      \(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)

      BC chung

Suy ra: ΔBNC=ΔCMB (c-g-c)

a: Xét ΔABM và ΔACN có

AB=AC
góc A chung

AM=AN

=>ΔABM=ΔACN

b: Xét ΔABC có

BM,CN là trung tuyến

BM cắt CN tại I

=>I là trọng tam

=>H là trung điểm của BC

ΔABC cân tại A

mà AH là trung tuyến

nên AH vuông góc BC

8 tháng 4 2019

bài này khá dễ, hình em tự vẽ nhé

a. Xét 2 tg ABK và ACK có:

AK chung

góc AKB = góc AKC ( đều = 900)

BK=CK ( vì AK là trung tuyến)

=> ABK = ACK ( 2 cạnh góc vuông)

Ta có: trong tam giác ABC cân, AK vừa là đường trung tuyến vừa là đg phân giác

=> góc BAH = góc CAH

Xét tg ABH và ACH

AH chung

góc BAH = CAH

BC = AC ( vì tg ABC chung)

=> tg ABH = ACH ( c.g.c)

8 tháng 4 2019

b. theo a, ta có: tg ABH = tg ACH (cgc)

=> góc ABH = góc ACH

Mà theo gt góc ABC = góc ACB => HBC = HCB

=> tg BHC cân tại H