Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △ABH vuông tại H và △ACH vuông tại H
Có: AB = AC (gt)
AH là cạnh chung
=> △ABH = △ACH (ch-cgv)
=> HB = HC (2 cạnh tương ứng) và BAH = CAH (2 góc tương ứng)
b, Ta có: BH + HC = BC => BH + HC = 6 (cm)
Mà HB = HC (cmt)
=> HB = HC = 6 : 2 = 3 (cm)
Xét △BAH vuông tại H
Có: AH2 + HB2 = AB2 (định lý Pytago)
=> AH2 = AB2 - HB2
=> AH2 = 42 - 32
=> AH2 = 16 - 9
=> AH2 = 7
=> AH = √ 7 (cm)
c, Vì △ABC có: AB = AC (gt) => △ABC cân tại A => ABC = ACB
Xét △BHM vuông tại M và △CHN vuông tại N
Có: BH = HC (cmt)
MBH = NCH (cmt)
=> △BHM = △CHN (ch-gn)
=> MH = NH (2 cạnh tương ứng)
Xét △MNH có: MH = NH (cmt) => △MNH cân tại H
A B C H D E
a) Xét \(\Delta\)ABH và \(\Delta\)ADH có :
BH = DH (gt)
góc AHB = góc AHD ( = 90 độ )
AH chung
=> \(\Delta\)ABH = \(\Delta\)ADH (c.g.c)
=> AB = AD ( hai cạnh tương ứng )
=> \(\Delta\)ABD cân tại A , mà góc ABD = 60 độ ( Do góc ABC = 60 độ )
=> \(\Delta\)ABD là tam giác đều (đpcm)
b) Do \(\Delta\)ABD đều
=> góc BAD = 60 độ
=> góc DAC = 30 độ (1)
Xét \(\Delta\)ABC có : góc A = 90 độ, góc B = 60 độ
=> góc C = 30 độ hay góc ACD = 30 độ (2)
Từ (1) và (2) => \(\Delta\)ADC cân tại D
=> AD = DC và góc ADC = 120 độ
=> góc HDE = 120 độ ( đối đỉnh với góc ADC )
Xét \(\Delta\)AHD và \(\Delta\)CED có :
góc AHD = góc CED ( = 90 độ )
AD = CD (cmt)
góc ADH = góc CDE ( đối đỉnh )
=> \(\Delta\)AHD = \(\Delta\)CED ( cạnh huyền - góc nhọn )
=> HD = ED ( hai cạnh tương ứng )
=> \(\Delta\)HDE cân tại E, có góc HDE = 120 độ (cmt)
=> góc DHE = góc DEH = 30 độ
Ta thấy : góc DHE = góc DCA = 30 độ , mà hai góc này ở vị trí sole trong
=> HE // AC (3)
Lại có : góc BAC = 90 độ \(\Rightarrow AB\perp AC\) (4)
Từ (3) và (4) => \(HE\perp AB\) (đpcm)
Có ΔABC cân ở A
=> AB = AC
H là trung điểm BC
=> HB = HC
Xét Δ AHB và ΔAHC có :
AB = AC ( cmt )
HB = HC ( cmt )
AH chung
=> ΔAHB = ΔAHC ( c.c.c)
Xét tam giác ABH và tam giác AHC
Ta có AB=AC( tam giác ABC cân tại A)
AH là cạnh chung
BH=HC(gt)
Do đó tam giác ABH= tam giác ACH(c.c.c)
suy ra BAH=HAC(2 góc tương ứng)
hay BAM=CAM
Xét tam giác ABM và tam giác AMC
Ta có AB=AC(cmt)
AM là cạnh chung
BAM=CAM(cmt)
Do đó tam giác ABM=tam giác ACM( c.g.c)
suy ra BM=MC( 2 cạnh tương ứng)
suy ra tam giác MBC cân tại M
Lại có ANB=MBC(AN song song với BC)
Mà MBC=MBA( BM là tia phân giác của ABC)
Nên ANB=MBA( =MBC)
suy ra tam giác ABN cân tại A
suy ra AB=AN( tính chất)
\(\widehat{A}=180^0-2\cdot\widehat{B}=180-2\cdot70=40^0\)
A