K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

a, xét tam giác ADB và tam giác ADE có:

                AE=AB(gt)

               \(\widehat{EAD}\)=\(\widehat{BAD}\)(gt)

              AD cạnh chung

\(\Rightarrow\)tam giác ADB=tam giác ADE

b, gọi o là giao điểm của AD và EB

 xét tam giác AOE và tam giác AOB có:

              AE=AB(gt)

             \(\widehat{OAE}\)=\(\widehat{OAB}\)(gt)

            AO cạnh chung

\(\Rightarrow\)tam giác AOE=tam giácAOB(c.g.c)

\(\Rightarrow\)OE=OB suy ra O là trung điểm của EB(1)

\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOB}\)=90 độ(2)

từ (1) và (2) suy ra AD là đg trung trực của BE

c, vì tam giác ADB=tam giác ADE(câu a) suy ra \(\widehat{DEA}\)=\(\widehat{DBA}\)

\(\Rightarrow\)\(\widehat{DBF}\)=\(\widehat{DEC}\)

còn lại bn tự làm nhé(phần sau cx dễ)

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

6 tháng 5 2017

a) Phần a bn chép sai đề rùi phải là tam giác ADB = tam giác ADE mới đúng !.

Xét tam giác ADB và tam giác ADE có:

AB = AE ( theo đề bài )

\(\widehat{BAD}=\widehat{CAD}\)( Vì AD là tia phân giác của \(\Delta ADC\))

AD là cạnh chung

Do đó tam giác ADB = tam giác ADE( c.g.c)

b) Gọi giao điểm của AD và BE là H

Xét tam giác AHB và AHE có:

AH là cạnh chung

\(\widehat{BAD}=\widehat{EAD}\) ( Vì AD là tia phân giác của \(\Delta ADC\) )

AB =AE ( theo đề bài )

Do đó tam giác AHB = tam giác AHE ( c.g.c)

\(\Rightarrow BH=EH\) ( 2 cạnh tương ứn0g)

\(\Rightarrow\)AD là đường trung tuyến của BE

c) *Có tam giác ADB = tam giác ADE ( theo c/m câu a)

\(\Rightarrow\) \(BD=DE\) (2 cạnh tương ứng ) \(\left(1\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\) ( 2 góc tương ứng )

mà:

\(\widehat{ABD}+\widehat{DBF}=180^0\Rightarrow\widehat{DBF}=180^0-\widehat{ABD}\)

\(\widehat{AED}+\widehat{DEC}=180^0\Rightarrow\widehat{DEC}=180^0-\widehat{AED}\)

\(\Rightarrow\widehat{DBF}=\widehat{DEC}\)

*Xét tam giác BFD và tam giác ECD có:

\(\widehat{DBF}=\widehat{DEC}\left(cmt\right)\)

\(BD=ED\left(1\right)\)

\(\widehat{BDF}=\widehat{EDC}\) (2 góc đối đỉnh)

Do đó: tam giác BFD = tam giác ECD (g.c.g)

7 tháng 5 2017

bn ve hinh nhu the nao

26 tháng 12 2017

B A C D E H

*Xét ΔABE và ΔACD có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AE=AD\left(gt\right)\\\widehat{A}.g\text{óc}.chung\end{matrix}\right.\)

⇒ ΔABE = ΔCAD (c - g - c)

⇒ BE = CD (hai cạnh tương ứng)

12 tháng 6 2017

Bài 2:

A B C D E H 1 2

a) Xét hai tam giác ABD và EBD có:

AB = EB (gt)

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

BD: cạnh chung

Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)

\(\widehat{BAD}=90^o\)

Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.

b) Vì AB = EB (gt)

\(\Rightarrow\) \(\Delta ABE\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực

Do đó: BD là đường trung trực của AE. (1)

c) Xét hai tam giác vuông ADH và EDC có:

DA = DE (\(\Delta ABD=\Delta EBD\))

\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)

Suy ra: AH = EC (hai cạnh tương ứng)

Ta có: BH = AB + AH

BC = EB + EC

Mà AB = EB (gt)

AH = EC (cmt)

\(\Rightarrow\) BH = BC

\(\Rightarrow\) \(\Delta BHC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay

BD \(\perp\) HC (2)

Từ (1) và (2) suy ra: AE // HC (đpcm).

14 tháng 6 2017

bạn ơi . sao lại cạnh góc vuông - góc nhọn vậy

3 tháng 8 2019

O A B C D M E x y

CM: a) Ta có: OA + AB = OB (A nằm giữa O và B vì OA < OB)

           OC + CD = OD (C \(\in\)OD)

mà OA = OC (gt); AB = CD (gt) => OB = OD

Xét t/giác OCB và t/giác OAD

có: OC = OA (gt)

 \(\widehat{O}\) : chung

 OB = OD (gt)

=> t/giác OCB = t/giác OAD (c.g.c)

=> BC = AD (2 cạnh t/ứng)

b) Ta có: \(\widehat{OCB}+\widehat{BCD}=180^0\) (kề bù)

           \(\widehat{OAD}+\widehat{DAB}=180^0\) (kề bù)

mà \(\widehat{OCB}=\widehat{OAD}\) (Vì t/giác OCB = t/giác OAD) => \(\widehat{BCD}=\widehat{DAB}\)

Xét t/giác AEB và t/giác CED

có: \(\widehat{EAB}=\widehat{ECD}\) (cmt)

 AB = CD (gt)

 \(\widehat{EBA}=\widehat{CDE}\) (vì t/giác OCB = t/giác OAD)

=> t/giác AEB = t/giác CED (g.c.g)

c) Xét t/giác OBE và t/giác ODE

có: OB = OE (Cm câu a)

 EB = ED (vì t/giác AEB = t/giác CED)

 OE : chung

=> t/giác OBE = t/giác ODE (c.c.c)

=> \(\widehat{BOE}=\widehat{DOE}\) (2 góc t/ứng)

=> OE là tia p/giác của góc xOy

d) Ta có: OA = OC (gt)

=> O \(\in\)đường trung trực của AC 

Ta lại có: t/giác AEB = t/giác CED (cmt)

=> AE = CE (2 cạnh t/ứng)

=> E \(\in\)đường trung trực của AC
Mà O \(\ne\)E => OE là đường trung trực của AC

e) Ta có: OD = OB (cmt)

=> OM là đường trung trực của DB  (1)

 EB = ED (vì t/giác AEB = t/giác CED) 

=> EM là đường trung trực của DB (2)

Từ (1) và (2) => OM \(\equiv\)EM

=>  O, E, M thẳng hàng

f) Ta có: OA = OC (gt)

=> t/giác OAC cân tại O

=> \(\widehat{OAC}=\widehat{OCA}=\frac{180^0-\widehat{O}}{2}\) (1)

Ta lại có: OB = OD (cmt)

=> t/giác OBD cân tại  O

=> \(\widehat{B}=\widehat{D}=\frac{180^0-\widehat{O}}{2}\) (2)

Từ (1) và (2) => \(\widehat{OAC}=\widehat{B}\)

mà 2 góc này ở vị trí đồng vị

=> AC // BD 

6 tháng 5 2017

Xem lại đề bạn nhé .-.