Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(M>1\) \(\left(1\right)\)
Lại có :
\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{c+a}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{a+a}{a+b+c}+\frac{b+b}{a+b+c}+\frac{c+c}{a+b+c}=\frac{a+a+b+b+c+c}{a+b+c}=2\)
\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)
Vậy \(M\) có giá trị không là số nguyên
P/s; Hình xấu nên mong bn thôg cảm
Trong tam giác ABC vuông có: \(\widehat{A}=90^o\),có AC là cạnh đối diện với \(\widehat{B}=30^o\)
=> AC = 1/2 BC (Định lý cạnh đối diện với góc 30 độ)
=.= hk tốt!!
Ta có : G(0) = a.02 + b.0 + c = 4
=> c = 4
G(1) = a.12 + b.1 + c = 9
=> a + b + c = 9
Mà c = 4 => a + b = 9 - 4 = 5 (1)
G(2) = a.22 + b.2 + c = 14
=> 4a + 2b + c = 14
Mà c = 4 > 4a + 2b = 14 - 4 = 10 => 2a + b = 5 (2)
Từ (1) và (2) trừ vế cho vế :
(a + b) - (2a + b) = 5 - 5
=> -a = 0 => a = 0
Thay a = 0 vào (1), ta được : 0 + b = 5 => b = 5
Vậy ...
\(G\left(0\right)=4\Rightarrow a.0^2+b.0+c=c=4\)
\(G\left(1\right)=9\Rightarrow a.1^2+b.1+c=a+b=9\)
\(G\left(2\right)=14\Rightarrow a.2^2+b.2+c=4a+2b=2.\left(2a+b\right)=14\)
\(\Rightarrow2a+b=7\)
Ta có: 2a + b - (a + b) = a = -2
=> b = 9 - (-2) = 11
Vậy a = -2; b = 11; c = 0
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a/b = b/c= c/a = a+b+c / a+b+ c = 1
vậy nên a= b=c
bạn áp dụng công thức a/b = b/c = a+b/b+c
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\Rightarrow a=b\) (1)
=> \(\frac{b}{c}=1\Rightarrow b=c\) (2)
=> \(\frac{c}{a}=1\Rightarrow c=a\) (3)
Từ (1),(2),(3) suy ra a = b = c