Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\)Ta có: x2 + y2 + z2 + 3 - 2(x + y + z) = (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = (x - 1)2 + (y - 1)2 + (z - 1)2 ≥ 0
=> x2 + y2 + z2 + 3 ≥ 2(x + y + z)
b) Áp dụng liên tiếp bất đẳng thức Cô-si:
\(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}=2\left(a^2b^2+c^2d^2\right)\ge2.2.\sqrt{a^2b^2c^2d^2}=4\left|abcd\right|\ge4abcd\)
Dấu "=" xảy ra <=> a = b = c = d
Bài 2:
Ta sẽ chứng minh ab + bc + ca ≤ \(\dfrac{1}{3}\)(a + b + c)2 = 0
<=> 3ab + 3bc + 3ca ≤ (a + b + c)2
<=> 3ab + 3bc + 3ca ≤ a2 + b2 + c2 + 2ab + 2bc + 2ca
<=> ab + bc + ca ≤ a2 + b2 + c2
Thật vậy:
(a - b)2 + (b - c)2 + (c - a)2 ≥ 0
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2 ≥ 0
<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
<=> a2 + b2 + c2 ≥ ab + bc + ca
Dấu "=" xảy ra <=> a = b = c = 0
\(a^2+b^2+c^2+d^2+4\ge2\left(a+b+c+d\right)\)
\(a^2+b^2+c^2+d^2+4-2a-2b-2c-2d\ge0\)
\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)+\left(d^2-2d+1\right)\ge0\)
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(d-1\right)^2\ge0\)
2)
Xét hiệu:
\(A^2+B^2+C^2+D^2+4-2A-2B-2C-2D\)
\(=\left(A^2-2A+1\right)+\left(B^2-2B+1\right)+\left(C^2-2C+1\right)+\left(D^2-2D+1\right)\)
\(=\left(A-1\right)^2+\left(B-1\right)^2+\left(C-1\right)^2+\left(D-1\right)^2\ge0\)
=> BĐT luôn đúng
Vậy \(A^2+B^2+C^2+D^2+4\ge2\left(A+B+C+D\right)\)
1)
Áp dụng BĐT Cauchy cho 2 số không âm, ta có:
\(\dfrac{AB}{C}+\dfrac{BC}{A}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{BC}{A}}=2B\) (1)
\(\dfrac{BC}{A}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{BC}{A}.\dfrac{AC}{B}}=2C\) (2)
\(\dfrac{AB}{C}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{AC}{B}}=2A\) (3)
Từ (1)(2)(3) cộng vế theo vế:
\(2\left(\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\right)\ge2\left(A+B+C\right)\)
\(\Rightarrow\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\ge A+B+C\)
1. BĐT tương đương với \(6\left(a^2+b^2\right)-2ab+8-4\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\ge0\)
\(\Leftrightarrow\left[a^2-4a\sqrt{b^2+1}+4\left(b^2+1\right)\right]+\left[b^2-4b\sqrt{a^2+1}+4\left(a^2+1\right)\right]\)\(+\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-2\sqrt{b^2+1}\right)^2+\left(b-2\sqrt{a^2+1}\right)^2+\left(a-b\right)^2\ge0\)(đúng)
=> Đẳng thức không xảy ra
2. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
\(\Leftrightarrow a^4+b^4+c^2+1\ge2a^2b^2-2a^2+2ac+2a\)
\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^2-2ac+a^2\right)+\left(a^2-2a+1\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c-a\right)^2+\left(a-1\right)^2\ge0\)
2) Có: \(a+b+c=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow VT=4\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-2abc\left(a+b+c\right)\right]\)
\(\Leftrightarrow VT=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2\)
Có: \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=c^2\Leftrightarrow2ab=c^2-a^2-b^2\)
Tương tự:...
\(VT=\text{Σ}_{cyc}\left(c^2-a^2-b^2\right)^2=2\left(a^4+b^4+c^4\right)=VP\)
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
có bđt x² + y² ≥ (x+y)²/2 (*)
cm: (*) <=> 2x²+2y² ≥ x²+y²+2xy <=> x²+y²-2xy ≥ 0 <=> (x-y)² ≥ 0 bđt đúng
dấu "=" khi x = y
ad bđt (*) vào bài toán:
a^4 + b^4 ≥ (a²+b²)²/2 ≥ [(a+b)²/2]²/2 = [(2²)/2]²/2 = 2 (đpcm) ; dấu "=" khi a = b = 1