K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2020

\(a+b=1\)\(\Rightarrow\hept{\begin{cases}a-1=-b\\b-1=-a\end{cases}}\)

Ta có: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)^3+3b\left(b-1\right)}-\frac{b}{\left(a-1\right)^3+3a\left(a-1\right)}\)

\(=\frac{a}{-a^3-3ab}-\frac{b}{-b^3-3ab}=\frac{a}{-a\left(a^2+3b\right)}-\frac{b}{-b\left(b^2+3a\right)}\)

\(=\frac{-1}{a^2+3b}-\frac{-1}{b^2+3a}=\frac{-1}{a^2+3b}+\frac{1}{b^2+3a}=\frac{-\left(b^2+3a\right)+a^2+3b}{\left(a^2+3b\right)\left(b^2+3a\right)}\)

\(=\frac{-b^2-3a+a^2+3b}{a^2b^2+3a^3+3b^3+9ab}=\frac{-\left(b^2-a^2\right)+\left(3b-3a\right)}{a^2b^2+3\left(a^3+b^3\right)+9ab}\)

\(=\frac{-\left(b-a\right)\left(b+a\right)+3\left(b-a\right)}{a^2b^2+3\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+9ab}=\frac{-\left(b-a\right)+3\left(b-a\right)}{a^2b^2+3\left[1-3ab\right]+9ab}\)

\(=\frac{2\left(b-a\right)}{a^2b^2+3-9ab+9ab}=\frac{2\left(b-a\right)}{a^2b^2+3}\left(đpcm\right)\)

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này.
 
20 tháng 12 2014

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm


 
23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

7 tháng 8 2019

Ta có \(\frac{a}{b^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}=-\frac{1}{b^2+b+1}\)(Vì \(a+b=1\))

Từ đó, với \(a+b=1\)ta biến đổi VT của đẳng thức cần chứng minh như sau:

\(VT=-\left(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}\right)=\frac{-\left(a^2+b^2+a+b+2\right)}{a^2b^2+a^2b+ab^2+ab+a^2+b^2+a+b+1}\)

\(=\frac{-\left[\left(a+b\right)^2-2ab+a+b+2\right]}{a^2b^2+ab\left(a+b+1\right)+\left(a+b\right)^2-2ab+a+b+1}=\frac{2\left(ab-2\right)}{a^2b^2+3}=VP\)

Vậy có ĐPCM.