Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{b}-1=\frac{a}{b}-\frac{b}{b}=\frac{a-b}{b}\)
\(\frac{a+2016}{b+2016}-1=\frac{a+2016}{b+2016}-\frac{b+2016}{b+2016}=\frac{a+2016-b-2016}{b+2016}=\frac{a-b}{b+2016}\)
So sánh nứa là ra ok bạn
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)
Vì a<0<b=>a<b=>a.2012<b.2012
=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}<\frac{ab+b.2012}{b.\left(b+2012\right)}\)
=>\(\frac{a}{b}<\frac{a+2012}{b+2012}\)
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)
để so sánh a/b và a+2012/b+2012
Ta xét tích:a(b+2012) và b(a+2012)
Vì b>0 =>b+2012>0
*a>b <=>2012a>2012b
<=>a(b+2012)>b(a+2012)
<=>a/b>a+2012/b+2012
*a=b<=>2012a=2012b
<=>a(b+2012)=b(a+2012)
<=>a/b=a+2012/b+2012
*a<b<=>2012a<2012b
<=>a(b+2012)<b(a+20120
<=>a/b<a+2012/b+2012
KL: a>b <=>a/b>a+2012/b+2012
....(tương tự như trên)
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
Qui đồng mẫu số:
ab=a(b+2017)b(b+2017)=ab+2017ab(b+2017)ab=a(b+2017)b(b+2017)=ab+2017ab(b+2017)
a+2017b+2017=b(a+2017)b(b+2017)=ab+2017bb(b+2017)a+2017b+2017=b(a+2017)b(b+2017)=ab+2017bb(b+2017)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
Ta so sánh: ab + 2017a với ab + 2017
−−Nếu a < b ⇒ tử số phân số thứ nhất < tử số phân số thứ hai
⇒ab<a+2017b+2017
−Nếu a = b ⇒⇒ hai phân số bằng nhau = 1
−Nếu a > b ⇒⇒ tử số phân số thứ nhất > tử số phân số thứ hai
⇒ab>a+2017b+2017
Chúc bạn học tốt!!!!
Ta có: \(\frac{a}{b}=\frac{a.\left(b+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\)
\(\frac{a+2001}{b+2001}=\frac{b.\left(a+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)
*TH1: a=b
=>\(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)
*TH2: a<b
=>ab+2001a<ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}< \frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH3:a>b
=>ab+2001a>ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}>\frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Cậu quy đồng lên r so sánh
Còn mún làm thì phải thay số của bài này
Link:
Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath
kết quả nó là :
=> \(\frac{a}{b}\)> \(\frac{a+2001}{b+2001}\)
còn cách làm thì vào trang Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath