K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

không biết

bạn nhé

tk nha@@@@@@@@@@@@@@@@@@@@

LOL

19 tháng 11 2016

Ta có: a + b chẵn và a,b nguyên tố cùng nhau nên a,b là hai số lẻ

*chứng minh P chia hết cho 8

Ta có (a + b) = 2k

a - b = a + b - 2b = 2k - 2b = 2(k - b)

Với k là số chẵn thì (a + b) chia hết cho 4, (a - b) chia hết cho 2

=> P chia hết cho 8

Với k là số lẻ thì (a + b) chia hết cho 2, (a - b) chia hết cho 4

=> P chia hết cho 8

Vậy ta có P chia hết cho 8 (1)

*Chứng minh P chia hết cho 3

Vì cả a, b đều là số lẻ nên a,b chia cho 3 dư 0 hoặc dư 1

Với 1 trong 2 số a,b chia hết cho 3 thì P chia hết cho 3

Với a,b chia cho 3 dư 1 thì (a - b) chia hết cho 3

Vậy P chia hết cho 3

Từ (1) và (2) kết hợp với việc 3 và 8 là hai số nguyên tố cùng nhau thì ta => P chia hết cho 24

19 tháng 11 2016

alibaba nguyễn: Khi chứng minh P chia hết cho 3

a; b lẻ vx có thể chia 3 dư 2 chứ; vd như 5; 17; 29; ... chẳng hạn

t nghĩ lm thế này: Câu hỏi của letienluc - Toán lớp 6 | Học trực tuyến

19 tháng 11 2016
  • Chứng minh P chia hết cho 8

Do ƯCLN(a;b) = 1 và a + b là số chẵn nên a và b cùng lẻ

Giả sử a = 2.m + 1; b = 2.n + 1 (m;n ϵ N)

Ta có: P = a.b.(a - b).(a + b)

= (2.m + 1).(2.n + 1).[(2.m + 1) - (2.n + 1)].[(2.m + 1) + (2.n + 1)]

= (2.m + 1).(2.n + 1).(2.m - 2.n).(2.m + 2.n + 2)

= (2.m + 1).(2.n + 1).2.(m - n).2.(m + n + 1)

= (2.m + 1).(2.n + 1).4.(m - n).(m + n + 1)

+ Nếu m - n chẵn thì P chia hết cho 2.4 = 8

+ Nếu m - n lẻ => m + n lẻ (vì m - n và m + n luôn cùng tính chẵn lẻ)

=> m + n + 1 chẵn => P chia hết cho 2.4 = 8

Như vậy, P luôn chia hết cho 8 (1)

  • Chứng minh P chia hết cho 3

Vì ƯCLN(a;b)=1 nên a và b không cùng đồng thời là bội của 3

+ Nếu 1 trong 2 số a; b chia hết cho 3 dễ dàng suy ra P chia hết cho 3

+ Nếu a và b cùng dư khi chia cho 3 => a - b chia hết cho 3

=> P chia hết cho 3

+ Nếu a và b khác dư khi chia cho 3 (trừ trường hợp chia 3 dư 0)

Như vậy, trong 2 số a; b có 1 số chia 3 dư 1; 1 số chia 3 dư 2

=> a + b chia hết cho 3 => P chia hết cho 3

Do đó, P luôn chia hết cho 3 (2)

Từ (1) và (2) mà (3;8)=1 => P chia hết cho 24 (đpcm)

 

 

 

19 tháng 11 2016

I can not believe it , This is our GOD

28 tháng 3 2016

Giải:a) mọi ước chung của a và b hiển nhiên là ước của b . Đảo lại, do a  chia hết cho b nen b là ước của a và b . Vậy ( a,b)=b

B) Gọi r là số dư trong phép chia a cho b ( a>b). . Ta có a=bk+r(k thuộc N) cần chứng minh rằng ( a, b) = (b,r). Thật vậy ,nếu a và b Cùng chia hết cho d thì r chia hết cho d, do đó ước chung của a và b cũng là ước chung của d và r(1) . Đảo lại nếu nếu b và r cùng chia hết cho d thì a chia hết cho d, do đó ước chung của d và r cũng là ước chung của a và b(2) . Từ (1) và(2) suy ra tập hợp các ước chung của a và b và tập hợp các ước chung của d và r bằng nhau . Do đó hai số lớn nhất trong hai tập hợp bằng nhau, tức là (a,b)=(b,r).

C)72 chia 56 dư 16 nên (72,56)=(56,16)

56 chia 16 dư8 nên ( 56,16)=(16,8)

Mà 16 chia hết cho 8 nên (16,8)=8

Các bạn ơi mình làm đúng 100% k mình nha kẻo mình tốn công viết