K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

ĐẦU TIÊN TA BÌNH PHƯƠNG HAI PHƯƠNG TRÌNH ĐÃ CHO.

Ta có : (a - 3ab2)2 = a6 - 6a4b+ 9a2b4 .

               (b3 - 3a2b)= b- 6a2b4 + 9a4b.

Ta lại có : (a- 3ab2)2 + (b3 - 3a2b)2 = a6 + 3a4b + 3a2b4 + b6  .

             <=> 2332 + 2010= (a2 + b2).

          <=> a2 + b\(\sqrt[3]{233^2+2010^2}\).

           

11 tháng 7 2015

(a+ b)3 = a3 + 3a2b + 3ab2 + b3 = (a3 + 3ab2) + (b3 + 3a2b) = 2006 + 2005 = 4011

=> a + b = \(\sqrt[3]{4011}\)

(a - b)3 = a3 - 3a2b + 3ab2 - b3 = (a3 + 3ab2) - (b3 + 3a2b) = 2006 - 2005 = 1

=> a - b = 1

=> P = a2 - b2 = (a - b)(a + b) = \(\sqrt[3]{4011}\)

11 tháng 7 2015

trời ơi mik cũng chán quá đây nè giờ chẳng muốn giải gì hết

4 tháng 7 2017

Ta có: \(\left\{{}\begin{matrix}a^3-3ab^2=19\\b^3-3a^2b=98\end{matrix}\right.\) => \(\left\{{}\begin{matrix}\left(a^3-3ab^2\right)^2=19^2=361\\\left(b^3-3a^2b\right)^2=98^2=9604\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a^6-6a^4b^2+9a^2b^4=361\\b^6-6a^2b^4+9a^4b^2=9604\end{matrix}\right.\)

=> \(a^6+b^6+\left(9a^2b^4-6a^2b^4\right)+\left(9b^2a^4-6a^4b^2\right)=9965\)

=> \(a^6+3a^2b^4+3a^4b^2+b^6=9965\)

=> \(\left(a^2+b^2\right)^3=9965\)

=> \(a^2+b^2=\sqrt[3]{9965}\)

4 tháng 7 2017

cam ơn bạn

29 tháng 8 2018

\(\left\{{}\begin{matrix}a^3+3ab^2=2019\\b^3+3a^2b=2018\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+3a^2b+3ab^2+b^3=4037\\a^3-3a^2b+3ab^2-b^3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3=4037\\\left(a-b\right)^3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt[3]{4037}\\a-b=1\end{matrix}\right.\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)=\sqrt[3]{4037}\)

2 tháng 8 2017

Ta có: (a3 + 3ab2)2 = a6 + 6a4b2 + 9a2b4 = 20062

(b3 + 3a2b)2 = b6 + 6a2b4 + 9a4b2 = 20052

=> (a3 + 3ab2)2 - (b3 + 3a2b)2 = a6 - 3a4b + 3a2b4 - b6 = 20062 - 20052

Hay (a2 - b2)3 = 4011. Vậy P = a2 - b2 = \(\sqrt[3]{4011}\)

14 tháng 1 2020

Ta có : \(a^2+3a=2\)

           \(b^2+3b=2\)

=> \(\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)

=> \(\left(a-b\right)\left(a+b+3\right)=0\)

=>  a = b ( loại ) hoặc a + b = - 3 ( Thỏa mãn )

Ta có : \(a^2+3a=2\Rightarrow a^3=2a-3a^2\)

           \(b^2+3b=2\Rightarrow b2b-3b^2\)

=> \(a^3+b^3=2a+2b-3\left(2-3a\right)-3\left(2-3b\right)\)

                    \(=11\left(a+b\right)-12=11\left(-3\right)-12=-45\)

3 tháng 4 2017

Ta tách như sau:

\(a^2+b^2+3ab-8a-8b-2\sqrt{3ab}+19=0\)

\(\Leftrightarrow a^2+b^2+2ab-8a-8b+ab-2\sqrt{3ab}+3+16=0\)

\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+\left(\sqrt{ab}-\sqrt{3}\right)^2+16=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-2.\left(a+b\right).4+16\right]+\left(\sqrt{ab}-\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\left(a+b-4\right)^2+\left(\sqrt{ab}-\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b-4=0\\\sqrt{ab}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=4\\ab=3\end{cases}}\)

Vậy thì phương trình bậc hai có nghiệm a và b là: \(x^2-4x+3=0\).

29 tháng 8 2016

Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
                                        \(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .

29 tháng 8 2016

THEO MÌNH a = 1    b = 0    c = 0 hoặc là a = 0     b = 1    c = 0

\(\Rightarrow\)S = 1      mình đã rất mỏi tay nên ko diễn giải dc  

FC : ĐÃ RẤT CỐ GẮNG