Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: 3a+2b⋮17
⇔8(3a+2b)⋮17
Ta có: 8(3a+2b)+10a+b
=24a+16b+10a+b
=34a+17b
=17(2a+b)⋮17
hay 8(3a+2b)+(10a+b)⋮17
mà 8(3a+2b)⋮17(cmt)
nên 10a+b⋮17(đpcm)
b) Ta có: \(F\left(0\right)=a\cdot0^2+b\cdot0+c=c\)
\(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)
\(F\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a-b+c\)
mà F(x)⋮3
nên F(0)⋮3; F(1)⋮3; F(-1)⋮3
hay c⋮3(đpcm 3); F(1)+F(-1)⋮3; F(1)-F(-1)⋮3
Ta có: F(1)+F(-1)⋮3(cmt)
⇔a+b+c+a-b+c⋮3
hay 2a+2c⋮3
⇔a+c⋮3
mà c⋮3(cmt)
nên a⋮3(đpcm1)
Ta có: F(1)-F(-1)⋮3(cmt)
⇔a+b+c-a+b-c⋮3
hay 2b⋮3
mà 2\(⋮̸\)3
nên b⋮3(đpcm2)

\(a^2+b^2->a^2:7;b^2:2\)
*\(a^2:7=>a:7\)
*\(b^2:7=>b:7\)
=>Vậy: a:7;b:7

a) \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.\left(16-2\right)=2^{17}.14⋮14\)
b) \(10^6-5^7=5^6.2^6-5^7=5^6.\left(2^6-5\right)=5^6.\left(64-5\right)=5^6.59⋮59\)

+TH1: x⋮3 và y⋮3 thì x2⋮3 và y2⋮3 => x2+y2⋮3.
+TH2: x⋮3 và y không chia hết cho 3 (hoặc x không chia hết cho 3 và y⋮3)
=> x2⋮3 và y2 không chia hết cho 3 => x2+y2 không chia hết cho 3 -> loại
+TH3: x và y cùng chia 3 dư 1; giả sử x = 3a+1; y = 3b+1
\(x^2+y^2=\left(3a+1\right)^2+\left(3b+1\right)^2=9a^2+6a+1+9b^2+6b+1=3\left(3a^2+2a+3b^2+2b\right)+2\)
=> x2+y2 chia 3 dư 2 -> loại.
+TH4: x và y cùng chia 3 dư 2; giả sử x = 3a-1; y = 3b-1
\(x^2+y^2=\left(3a-1\right)^2+\left(3b-1\right)^2=9a^2-6a+1+9b^2-6b+1=3\left(3a^2-2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại
+TH5: x chia 3 dư 1 và y chia 3 dư 2 (hoặc x chia 3 dư 2 và y chia 3 dư 1); giả sử x = 3a+1; y = 3b-1
\(x^2+y^2=\left(3a+1\right)^2+\left(3b-1\right)^2=9a^2+6a+1+9b^2-6b+1=3\left(3a^2+2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại
Vậy: x2 + y2 chia hết cho 3 khi và chỉ khi x và y chia hết cho 3.