K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

\(a+1+b+2007⋮6\Rightarrow a+b+2008⋮6\)

vì 2008 chia cho 6 dư 4 nên a+b chia cho 6 phải dư 2 

vì 4 chia 6 dư 4 \(\Rightarrow4^a\div6\)dư 4 \(\Rightarrow4^a+a+b\div6\)dư 4+2=6 \(\Rightarrow4^a+a+b⋮6\)

27 tháng 7 2018

Câu hỏi của Nguyễn Thanh Hà - Toán lớp 7 - Học toán với OnlineMath tham khảo

2 tháng 2 2019

đồng dư nhé bạn.

Vì a là số nguyên dương nên \(4^a\equiv1\left(mod3\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)

Mà \(4^a+2\equiv0\left(mod2\right)\)

Mặt khác \(\left(2,3\right)=1\)

\(\Rightarrow4^a+2⋮6\)

Khi đó \(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)

Vậy với a,b là các số nguyên dương và a+1;b+2007 chia hết cho 6 thì \(4^a+a+b\)chia hết cho 6

28 tháng 8 2016

Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.

Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.

4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.

Bạn xem lại đề.

20 tháng 9 2016

Sai đề rồi

29 tháng 6 2018

Từ đề bài \(\Rightarrow a^2+b^2-2ab-8a=0\Leftrightarrow\left(a-b\right)^2=8a\)

Hay \(\left(a-b\right)^2=4.2a\)

Vì \(\left(a-b\right)^2;4\)là số chính phương nên \(2a\) là số chính phương chẵn \(\Rightarrow2a=4k^2\left(k\in Z\right)\)

Do đó \(a=2k^2⋮2\) và \(\frac{a}{2}=k^2\) là số chính phương (ĐPCM)

11 tháng 5 2020

gưgeegfewbfdqa

14 tháng 8 2020

Ta có : a2 + b2 = c2

=> a2 + b2 - c2 = 0

=> a2 + b2 + 2ab - c2 = 2ab

=> (a + b)2 - c2 = 2ab

=> (a + b - c)(a + b + c) = 2ab

=> (a + b - c)/2 . (a + b + c) = ab

=> ab \(⋮\)a + b + c (đpcm)

14 tháng 8 2020

Bạn Xyz làm sai rồi nhé !!!!!

Chỗ:    \(\left(\frac{a+b-c}{2}\right)\left(a+b+c\right)=ab\)

Đoạn này để có:    \(ab⋮\left(a+b+c\right)\)     thì bạn phải lập luận     \(\frac{a+b-c}{2}\inℤ\)     đã nhé !!!!!! 

(NẾU BẠN SUY LUÔN RA     \(ab⋮\left(a+b+c\right)\)   LÀ SAI RỒI)

=> Cần phải chứng minh:     \(a+b-c⋮2\) 

Có: \(a^2+b^2=c^2\)

=> Nếu a chẵn; b chẵn thì c cũng chẵn        =>    \(a+b-c⋮2\) 

Nếu a chẵn; b lẻ thì c lẻ    =>   b - c chẵn     =>   \(a+b-c⋮2\)

Nếu a lẻ; b lẻ thì c chẵn    =>   a + b chẵn    =>   \(a+b-c⋮2\)

Nếu a lẻ; b chẵn thì c lẻ    =>   a - c chẵn     =>   \(a+b-c⋮2\)

VẬY QUA 4 TRƯỜNG HỢP THÌ TA =>   \(\frac{a+b-c}{2}\inℤ\)

Khi đó thì      \(ab⋮\left(a+b+c\right)\)

TA CÓ ĐPCM !!!!!

7 tháng 8 2016

\(a+1\text{ ≡ }0\left(mod6\right)\)

\(b+2013\text{ ≡ }0\left(mod6\right)\)

\(\Rightarrow a+b+2014\text{ ≡ }0\left(mod6\right)\)

\(\Rightarrow a+b\text{ ≡ }2\left(mod6\right)\)

Giờ ta cần chứng minh \(4^a\text{ ≡ }4\left(mod6\right)\)

Với \(a=1\Rightarrow4^a=4\text{ ≡ }4\left(mod6\right)\)

Đặt \(4^k\text{ ≡ }4\left(mod6\right)\left(k>1\right)\) 

Ta sử dụng quy nạp , chứng minh \(4^{k+1}\)cũng chia 6 dư 4.

Ta có :

\(4^k\text{ ≡ }4\left(mod4\right)\)

\(\Rightarrow4^{k+1}\text{ ≡ }16\text{ ≡ }4\left(mod6\right)\)

\(\Rightarrow4^a\)luôn chia 6 dư 4.

\(\Rightarrow4^a+a+b\text{ ≡ }6\text{ ≡ }0\left(mod6\right)\)

Vậy ...

 

 

7 tháng 8 2016

Câu hỏi của Nguyễn Thanh Hà - Toán lớp 7 - Học toán với OnlineMath