K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

Ta cóL

a+5b chia hết cho 7

=> 10(a+5b)=10a+50b chia hết cho 7

Mà 49b chia hết cho 7

=> 10a+50b-49b chia hết cho 7

=> 10a+b chia hết cho 7

\(a+5b⋮7\Rightarrow3a+15b⋮7\)

Ta có \(\left(10a+b\right)-\left(3a+15b\right)=7a-14b=7\left(a-2b\right)⋮7\Rightarrow10a+b⋮7\)

Có: a+5b chia hết cho 7

=> 2.(a+5b)\(⋮\) 7

 \(\Leftrightarrow2a+10b⋮7\)

 \(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )

\(\Leftrightarrow2a+3b\)  chia hết cho 7 

=> điều phải chứng minh

23 tháng 5 2015

2- 

Ta có:

a+5b chia hết cho 7

=>10.(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7

=>49b chia hết cho 7 (đúng)

Vì vậy 10a+b chia hết cho 7

CM điều ngược lại đúng

Ta có:

10a+b chia hết cho 7

=>5.(10a+b) chia hết cho 7

=>50a+5b chia hết cho 7

Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7

=>49a chia hết cho 7 (đúng)

Vậy điều ngược lại đúng

 

23 tháng 5 2015

Vì a và 5a có tổng các chữ số như nhau 

=> a và 5a có cùng số dư khi chia cho 9 

=> 5a - a chia hết cho 9

=> 4a chia hết cho 9

Mà ƯCLN(4,9) = 1

=> a chia hết cho 9 (đpcm)

17 tháng 9 2018

dễ lắm bn cứ nhân lên mk chỉ một abif r cứ dựa vào mà làm nhá

25.(3a+2b)+10a+b=85a+51b chia hết cho 17

vì 3a+2b chia hết cho 17 mà 25.(3a+2b)+10a+b=85a+51b chia hết cho 17=>10a+bchia hết cho 17

13 tháng 12 2014

vì a + 5b chia hết 7 => 11 ( a + 5b ) cũng chia hết 7

mà 11( a + 5b ) = 11a + 55b = a+ 5b + 10a + b + 49b

xét tổng trên có : a + 5b chia hết 7 ( theo đề bài )

                            49b chia hết 7 ( vì 49 chia hết 7 )

nên số hạng còn lại là 10a + b phải chia hết cho 7 => đpcm

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

1 tháng 2 2018

x+4y\(⋮\)13

=>10.(x+4y)\(⋮\)13

10x+40y\(⋮\)13

10x+y+39y\(⋮\)13

mà 39y chia hết cho 13

=>10x+y\(⋮\)13

chắc bn viết nhầm x thành a

17 tháng 12 2016

Giả sử (10a + b)⋮7 (1)

Vì (a + 5b)⋮7 nên 4(a + 5b)⋮7

=> (4a + 20b)⋮7 (2)

Từ (1) và (2) => (10a + b) + (4a + 20b)⋮7

=> (10a + b + 4a + 20b)⋮7

=> (10a + 4a) + (b + 20b)⋮7

=> (14a + 21b)⋮7

=> 7(2a + 3b)⋮7 (đúng)

=> Điều giả sử là đúng

Vậy (10a + b)⋮7 (đpcm)

 

17 tháng 12 2016

Theo đầu bài (a+5b) \(⋮\)7 (a, b \(\in\) N*)
=> a \(⋮\)7, 5b \(⋮\)7
Mà 5 \(⋮̸\) 7 nên b \(⋮\)7
Do a \(⋮\)7 nên 10a \(⋮\)7
=> 10a + b \(⋮\)7
Vậy 10a + b \(⋮\)7

21 tháng 12 2015

trong sách nâng cao và phát triển ý, cứ tìm sẽ ra