K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2021

Ta có: \(A=\left(a+b\right)\left(a^2-ab+b^2\right)+\dfrac{6}{a^2+b^2}+3ab\)

               \(=2\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}+ab\)

               \(=\left[\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}\right]+\dfrac{a^2+b^2}{2}+ab\)

               \(\ge2\sqrt{\dfrac{3}{2}\left(a^2+b^2\right).\dfrac{6}{a^2+b^2}}+\dfrac{\left(a+b\right)^2}{2}=2.3+\dfrac{2^2}{2}=8\)

Dấu "=" xảy ra ⇔ a=b=1

Cần các cao nhân giải khác phương pháp SS

Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)

Ai làm được xin cảm ơn trước

22 tháng 7 2019

#)Giải :

Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Áp dụng BĐT Cauchy :

\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)

Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)

\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)

\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)

Dấu ''='' xảy ra khi a = b = c = 1

12 tháng 11 2018

Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)

Dễ thấy \(P-S=0\)

\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)

Ta chứng minh: 

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)

\(\Rightarrow P\ge1\)

5 tháng 9 2021

P-S=0 ?? =))

3 tháng 6 2018

Đặt \(x=2a\)và \(y=2b\)suy ra \(\hept{\begin{cases}x>0\\y>0\\x+y\le2\end{cases}}\)

Suy ra : \(A=\frac{x}{y+2}+\frac{y}{x+2}+\frac{2}{x+y}\)

\(\Rightarrow A=\frac{x^2}{xy+2x}+\frac{y^2}{xy+2y}+\frac{2}{x+y}\)

\(\Rightarrow A\ge\frac{\left(x+y\right)^2}{2\left(xy+x+y\right)}+\frac{2}{x+y}\)

\(\Rightarrow A\ge\frac{\left(x+y\right)^2}{2\left(\frac{\left(x+y\right)^2}{4}+\left(x+y\right)\right)}+\frac{2}{x+y}\)

Đặt \(t=x+y\)(   \(0< t\le2\))

Suy ra :

\(\Rightarrow A\ge\frac{t^2}{\frac{t^2}{2}+2t}+\frac{2}{t}\)

\(\Rightarrow A\ge\frac{2t}{t+4}+\frac{2}{t}\)

\(\Rightarrow A\ge\frac{2t}{t+4}+\frac{4}{3}.\frac{1}{t}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{2t}{t+4}.\frac{4}{3}.\frac{1}{t}}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{8}{3\left(t+4\right)}}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{8}{3.\left(2+4\right)}}+\frac{2}{3}.\frac{1}{2}=\frac{5}{3}\)

"=" xảy ra khi \(x=y=\frac{1}{2}\)