Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2a+3b+\frac{1}{a}+\frac{4}{b}=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)
\(\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)
Dấu "=" xảy ra <=> \(a=1;\)\(b=2\)
Vậy MIN P = 11 Khi a = 1; b = 2
Bài này là BĐT cosi
\(P=2a+3b+\frac{1}{a}+\frac{4}{b}\)
\(P=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)
\(P\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)
Dấu "=" xảy ra khi a = 1/a <=> a = 1 ; b = 4/b <=> b = 2
Gấp không có nghĩa là cho lên CHH nha :D
\(a^3-2a^2+a^2b+2a+2b=4\Leftrightarrow a^2\left(a+b\right)+2\left(a+b\right)-2a^2-4=0\Leftrightarrow\left(a^2+2\right)\left(a+b\right)-2\left(a^2+2\right)=0\Leftrightarrow\left(a^2+2\right)\left(a+b-2\right)=0\)
Vì \(a^2+2>0\forall a\)
\(\Rightarrow a+b-2=0\Leftrightarrow a+b=2\)
\(P=\frac{1}{a}+\frac{1}{b}\)
Áp dụng BĐT Cauchy Schwarz dạng Engel:
\(\Rightarrow P=\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}=\frac{4}{2}=2\)
Vậy \(Min_P=2\Leftrightarrow a=b=1\)
\(\Leftrightarrow a^2\left(a+b-2\right)+2\left(a+b-2\right)=0\)
\(\Leftrightarrow\left(a^2+2\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow a+b=2\)
\(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=2\)
a) Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=2\)
Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{}\text{}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)
Ta thấy: \(\text{}\text{}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)
\(\text{}\text{}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)
Do đó: P \(\ge2+4+5=11\)
Vậy: P(min)=11 khi: \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)
\(Like\)