Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Có thể là vô tỉ. Ví dụ: \(\hept{\begin{cases}a=\sqrt{2}\\b=\sqrt{2}\end{cases}}\)
b/ Không thể vì
Giả sử a, b là số vô tỷ
Nếu \(\frac{a}{b}\)là số hữu tỷ thì có dạng
\(\hept{\begin{cases}a=m.q\\b=n.q\end{cases}\left(m,n\in Q;q\in I\right)}\)
\(\Rightarrow a+b=m.q+n.q=q\left(m+n\right)\in I\)
Trái giả thuyết.
c/ Có thể Ví dụ: \(\hept{\begin{cases}a=\sqrt{2}\\b=\sqrt{2}\end{cases}}\)
<=> (a2+b2)(a+b)2- 2(a+b)2 +1+ a2b2 -2ab= -4ab <=> (a2+b2)(a2+b2+2ab)- 2(a+b)2+ a2b2+ 2ab+ 1=0
<=> [(a2+b2)2+(a2+b2).2ab+a2b2 ] - 2(a2+b2+2ab)+2ab+1=0 <=> (a2+b2+ab)2- 2(a2+b2+ab)+1=0
<=> (a2+b2+ab-1)2=0 <=> a2+b2+ab-1=0 <=> (a+b)2-(1+ab)=0 <=> (a+b)2 =1+ab => \(\sqrt{1+ab}=\)\(|a+b|\)là số hữu tỉ
\(\left(GT\right)\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\left(a,b\inℚ\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)
\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)
Ta có :
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)
\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)
\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)
\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)
Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :
\(A+B=x\left(x^2-3y\right)+2y\)
\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)
\(\Rightarrow\)Các đa thức này là các số hữa tỉ \(\left(đpcm\right)\)