K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

Ta có:

\(\dfrac{a}{b}=ab\Rightarrow a=\dfrac{a}{b^2}\Rightarrow b^2=1\Rightarrow\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)

+) Nếu b=1 \(\Rightarrow ab=a+b\Rightarrow a=a+1\left(vôlí\right)\)

+) Nếu \(b=-1\Rightarrow ab=a+b\Rightarrow-a=a-1\Rightarrow a=\dfrac{1}{2}\)

\(T=a^2+b^2=\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2=\dfrac{1}{4}+1=\dfrac{5}{4}\)

1 tháng 3 2022

ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1

+) Nếu b=1 ⇒ab=a+b⇒a=a+1(vôlí)⇒ab=a+b⇒a=a+1(vôlí)

+) Nếu b=−1⇒ab=a+b⇒−a=a−1⇒a=12b=−1⇒ab=a+b⇒−a=a−1⇒a=12

T=a2+b2=(12)2+(−1)2=14+1=54

23 tháng 11 2020

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\Rightarrow M=1\)

11 tháng 3 2018

a : b = ab

=> a = ab.b = ab^2

=> b^2 = 1 ( vì a,b khác 0 )

=> b=+-1

+, Nếu b=-1

Có : ab = a+b

=> -a = a+1

=> a=-1/2

=> T = 5/4

+, Nếu b = 1

Có : ab = a+b

=> a = a+1

=> ko tồn tại a t/m

Vậy T = 5/4

Tk mk nha

10 tháng 3 2015

(gt) => 1/ a^100(1-a) = b^100(b-1)   =>  (a/b)^100(1-a)=(a/b)^101(1-a) (=b-1)

           2/ a^101(1-a) = b^101(b-1)

=>(a/b)^100(1-a/b)(1-a)=0 => a=b V a=1

TH a=b: => a=b=1

TH a=1: => b=1

Vậy trong cả hai TH đều có a=b=1 => P=a^2014+b^2014=2

17 tháng 4 2016

ta có                                       

24 tháng 1 2018

Ta có: \(\dfrac{a}{b}=ab=a+b\)

Từ \(\dfrac{a}{b}=ab\Leftrightarrow a=\dfrac{a}{b^2}\Leftrightarrow b^2=1\Leftrightarrow\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)

Với \(b=1\) ta có: \(a=a+1\) (vô lí)

Với \(b=-1\) ta có: \(-a=a-1\Leftrightarrow2a=1\Leftrightarrow a=\dfrac{1}{2}\) (thỏa mãn)

\(T=a^2+b^2=\dfrac{1}{4}+1=\dfrac{5}{4}\)