K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

AD bất đẳng thức cô si ta được:\(a^2+b^2\ge2ab\Rightarrow ab\le\frac{a^2+b^2}{2}=2\)                                                 AD bất đẳng thức bunhiacopxki ta được:\(\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1^2+1^2\right)=4.2=8\Rightarrow\left(a+b\right)\le2\sqrt{2}\)                                       \(\Rightarrow\frac{ab}{a+b+2}\le\frac{2}{2\sqrt{2}+1}=\frac{1}{\sqrt{2}+1}\)                                                                                                    dấu "=" xảy ra khi và chỉ khi a=b=1

27 tháng 5 2021

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

11 tháng 1 2018

\(A=\frac{9}{6ab}+\frac{9}{3\left(a^2+b^2\right)}+\frac{1}{2ab}\)

\(\ge\frac{\left(3+3\right)^2}{3\left(a+b\right)^2}+\frac{1}{2\cdot\frac{\left(a+b\right)^2}{4}}\)

\(=\frac{\left(3+3\right)^2}{3\cdot1^2}+\frac{1}{2\cdot\frac{1^2}{4}}=14\)

\("="\Leftrightarrow a=b=\frac{1}{2}\)

16 tháng 5 2017

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

17 tháng 10 2020

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

17 tháng 10 2020

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

5 tháng 12 2016

Ta có

\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(\Leftrightarrow\frac{2a}{\sqrt{ab+bc+ca+a^2}}+\frac{b}{\sqrt{ab+bc+ca+b^2}}+\frac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+b.\frac{1}{\sqrt{\left(b+a\right)\left(b+c\right)}}+c.\frac{1}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+2b.\frac{1}{\sqrt{\left(a+b\right).4.\left(b+c\right)}}+2c.\frac{1}{\sqrt{\left(a+c\right).4.\left(b+c\right)}}\)

\(\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{4\left(b+c\right)}+\frac{c}{a+c}+\frac{c}{4\left(b+c\right)}\)

\(=1+1+\frac{1}{4}=\frac{9}{4}\)

5 tháng 12 2016

Xem lại đề nhé

3 tháng 2 2021

Ta có: \(\left(a^4-a^3+2\right)-\left(a+1\right)=\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Rightarrow a^4-a^3+2\ge a+1\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự:\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

\(\Rightarrow VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)\(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)(abc = 1)

Đẳng thức xảy ra khi a = b = c = 1

ta có:

\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)

tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

áp dụng bđt cô si ta có:

\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)

20 tháng 3 2021

Áp dụng bđt cô si ta có : \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(< =>\frac{a}{a^2+bc}\le\frac{1}{2\sqrt{bc}}\)

Tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

Ta sẽ chứng minh bđt phụ sau\(\frac{1}{\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Ta thấy  \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}< =>\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{\sqrt{xy}}\)

Áp dụng bđt phụ trên ta có \(\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)

\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{\frac{1}{2}\left(ab+bc+ca\right)}{abc}\le\frac{\frac{1}{2}abc}{abc}=\frac{1}{2}\)(đpcm)

Dấu "=" xảy ra \(< =>a=b=c=3\)

bài này quan trọng là tìm đc cái bđt phụ đó thôi bạn

Áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Ta Có \(\frac{a}{a^2+bc}\le\frac{a}{4}.\left(\frac{1}{a^2}+\frac{1}{bc}\right)\)  và \(a^2+b^2+c^2\le abc\)

\(=>\frac{a}{a^2+bc}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{a^2}{a^2+b^2+c^2}\right)\)

Tương tự các cái khác ta có

\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\le\frac{a^2+b^2+c^2}{abc}\le1\)

\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{2}\left(dpcm\right)\)Dấu = xảy ra <=> a=b=c=3 "_"

Học tốt