Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a;b \(⋮̸\) cho 3
\(\Rightarrow\)a; b chia 3 dư 1 hoặc dư 2
+ khi a; b chia 3 dư 1 \(\Rightarrow\)a= 3k + 1 ; b = 3q + 1 (k; q \(\in\)N* )
\(\Rightarrow\)ab - 1 = (3k + 1)(3q +1) -1 = 9kq + 3k + 3q + 1 - 1 = 9kq + 3k + 3q \(⋮\)3
+ khi a; b chia 3 dư 2 \(\Rightarrow\)a = 3k + 2 ; b = 3q +2 (k; q \(\in\)N* )
\(\Rightarrow\)ab - 1 = (3k + 2)(3q +2) -1 = 9kq + 3k + 3q + 4 - 1 = 9kq + 3k + 3q +3 \(⋮\)3
\(\Rightarrow\)ĐPCM
vậy ............
~~ học tốt ~~
vì số chẵn >3 khi chia luông dư một, số lẻ thì dư hai
mà chẵn.lẻ=chẵn
a khác b nên ab-1 chia hết cho 3
Cách hai: vì một số lí do nào đó nên (ab-1) chia hết cho3
cho a;b là 2 số nguyên ko là bội của 3 nhưng có cùng số dư chia hết cho 3.CMR số ab-1 chia hết cho 3
Vi a,b lần lượt là bội của 3 nhưng có cùng số dư
Do đó a,b đều có dạng là 3k+1;3k+2
Xét ab-1 tại a,b có dạng 3k+1:
Ta có: \(\left(3k+1\right)^2-1=9k^2+6k=3\left(3k^2+2k\right)⋮3\)
Tương tự: tại a,b có dạng 3k+2
Ta có: \(\left(3k+2\right)^2-1=9k^2+12k+3=3\left(3k^2+4k+1\right)⋮3\)
Vậy ab-1 chia hết cho 3
Ta có:a ko chia hết cho 3
b ko chia hết cho 3
Và ki a và b chia 3 có cùng số dư
Suy ra: Trường hợp 1:a và b có dạng 3k+1
\(\Rightarrow ab-1=\left(3k+1\right)\left(3k+1\right)-1\)
\(\Rightarrow ab-1=9k^2+3k+3k+1-1\)
\(ab-1=9k^2+3k+3k\)
\(\Rightarrow ab-1=3\left(3k^2+k+k\right)⋮3\)(1)
Trường hợp 1:a và b có dạng 3k+2
\(\Rightarrow ab-1=\left(3k+2\right)\left(3k+2\right)-1\)
\(\Rightarrow ab-1=9k^2+6k+6k+4-1\)
\(ab-1=9k^2+6k+6k+3\)
\(\Rightarrow ab-1=3\left(3k^2+2k+2k+1\right)⋮3\)(2)
Từ (1) và (2)
Suy ra: ab-1 chia hết cho 3 (điều phải chứng minh)
a,b \(\notin B\left(3\right)\)nhưng chia 3 có cùng số dư nên số dư là 1 hoặc 2 .Do đó, (a ; b) = (3x + 1 ; 3y + 1) ; (3x + 2 ; 3y + 2) (x,y \(\in Z\))
=> ab - 1 = (3x + 1)(3y + 1) = 9xy + 3x + 3y + 1 - 1 = 3.(3xy + x + y) chia hết cho 3
hoặc ab - 1 = (3x + 2)(3y + 2) - 1 = 9xy + 6x + 6y + 4 - 1 = 9xy + 6x + 6y + 3 = 3.(3xy + 2x + 2y + 1) chia hết cho 3
Vậy a,b nguyên khi chia 3 có cùng số dư khác 0 thì ab - 1 chia hết cho 3
xét a;b=3k+1;3q+1
=>ab-1=(3k+1)(3q+1)-1=(3k+1)3q+3k+1-1=3[(3k+1)q+k] chia hết cho 3(1)
xét a;b=3q+2;3k+2
=>ab-1=(3k+2)(3q+2)-1=(3k+2)3q+2(3k+2)-1
=(3k+2)3q+3.2k+4-1=3[(3k+2).q+2k+1] chia hết cho 3(2)
từ (1);(2)=>đpcm