Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Giải:
Đặt \(A=n^3+3n^2-n-3\) ta có
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Thay \(n=2k+1\left(k\in Z\right)\) ta được:
\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)
\(=8\left(k+1\right)k\left(k+2\right)\)
Mà \(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)
Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)
a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3)
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z)
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4)
= 2(k+1)2(k+2)= 4(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2
=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)
a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3
=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8
vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ
nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8
nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do
Nhận xét : số chính phương chia 3 dư 0 hoặc 1
+, Nếu a^2 và b^2 đều chia 3 dư 1 => a^2+b^2 chia 3 dư 2
+, Nếu trong 2 số a^2 và b^2 có 1 số chia hết cho 3 và 1 số chia 3 dư 1 => a^2+b^2 chia 3 dư 1
=> để a^2+b^2 chia hết cho 3 thì a^2 và b^2 đều chia hết cho 3
Mà 3 là số nguyên tố nên a và b đều chia hết cho 3
Tk mk nha
CMR với mọi số nguyên x, ta có:
a) x3 + 3x2 + 2x chia hết cho 6.
b) ( x2 + x +1 )2 -1 chia hết cho 24.
a) Gọi a+4b là c, 10a+b là d.Ta có:
a+4b= c
10a+b = d
=> 3a+ 12b =3c
10a + b = d
=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13
Mà: 3c+d chia hết cho 13
3c chia hết cho 13
=> d chia hết cho 13 hay 10a+ b chia hết cho 13
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
Vì a,b là 2 số lẻ không chia hết cho 3 nên a, b thuộc dạng : 3k+1hoặc 3k+2 (k thuộc Z)
Ta xét: (3k+1)2= 9k2+6k+1 chia 3 dư 1
(3k+2)2=9k2+12k +3+1 chia 3 dư 1
Vì vậy, a2 và b2 đều chia 3 dư 1 => a2-b2 chia hết cho 3 (1)
Lại có: a2 -b2 = a2-1-(b2-1) = (a-1)(a+1)- (b-1)(b+1)
Vì a, b là 2 số lẻ nên a-1,a+1,b-1,b+1 đều là số chẵn mà tích của 2 số chẵn chia hết cho 8 nên (a-1)(a+1)-(b-1)(b+1) chia hết cho 8.(2)
Vậy từ (1) và (2) và (3,8)=1 ta suy ra: a2-b2 chia hết cho 24.
***********************(nếu không biết tại sao 2 số chẵn liên tiếp chia hết cho 8 thì bạn xem cái này nhé, không cần viết trong lời giải cũng được)
Tại sao 2 số nchẵn liên tiếp lại chia hết cho 8?
2k.(2k+2)= 4k(k+1) , vì k(k+1) là 2 số nguyên liên tiếp nên sẽ chia hết cho 2 nên 4k(k+1) chia hết cho 8.