Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2\le ab+1\)
\(\Leftrightarrow a^2-ab+b^2\le1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^5+b^5\right)\left(a^3+b^3\right)\le\left(a^7+b^7\right)\left(a+b\right)\)
\(\Leftrightarrow ab^7+a^7b-a^3b^5-a^5b^3\ge0\)
\(\Leftrightarrow ab\left(b^6+a^6-a^2b^4-a^4b^2\right)\ge0\)
\(\Leftrightarrow ab\left(b-a\right)^2\left(b+a\right)^2\left(b^2+a^2\right)\ge0\) (đúng)
\(\RightarrowĐPCM\)
Dấu đẳng thức xảy ra khi ......
Cho a, b là 2 số dương. Chứng minh rằng: \(a^4+b^4\ge a^3b+ab^3\). Dấu của đẳng thức xảy ra khi nào?
câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)2 +3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0
câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)2 +3b2/2 .a=0 và b=0
Trước tiên chứng minh:
\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
(nhân vô rút gọn chuyển hết sang trái được)
\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-6abc\ge0\)
\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(b^2a-2abc+c^2a\right)\ge0\)
\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2+\left(a\sqrt{c}-b\sqrt{c}\right)^2+\left(b\sqrt{a}-c\sqrt{a}\right)^2\ge0\)(đúng)
Từ đây ta có:
\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow ab+bc+ca\le\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\left(a+b+c\right)}=\frac{9}{4\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)}\)
\(\le\frac{9}{4.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{4.3}=\frac{3}{4}\)
Vậy \(ab+bc+ca\le\frac{3}{4}\)
C/m BĐT phụ: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (*) (x,y dương)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\)\(x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (BĐT đã đc chứng minh)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
ÁP dụng BĐT (*) ta có:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\) (1)
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{p-b+p-c}=\frac{4}{2p-\left(b+c\right)}=\frac{4}{a}\) (2)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{p-c+p-a}=\frac{4}{2p-\left(c+a\right)}=\frac{4}{b}\) (3)
Lấy (1); (2); (3) cộng theo vế ta được:
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\)\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Khi đó \(\Delta ABC\)là tam giác đều
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)