K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

`Answer:`

Có `a^2.(b+c)=b^2.(a+c)`

`<=>a^2.b+a^2.c-ab^2-b^2.c=0`

`<=>ab.(a-b)+c.(a^2-b^2)=0`

`<=>(a-b)(ab+c(a+b))=0`

`<=>(a-b)(ab+ac+bc)=0`

`<=>ab+ac+bc=0`

Lúc này  `P=c^2.(a+b)=c.(ac+bc)=c.(-ab)=-abc`

Mà `a^2.(b+c)=a.(ab+ac)=a.(-bc)=-abc=2022`

Vậy `P=2022`

19 tháng 2 2020

\(\text{Ta có: }a^2\left(b+c\right)-b^2\left(a+c\right)=2020\)
\(\Leftrightarrow a^2b+a^2c-b^2a-b^2c=0\)
\(\Leftrightarrow\left(a^2b-b^2a\right)+\left(a^2c-b^2c\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[ab+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\ab+ac+bc=0\end{cases}}\)
\(\text{Xét phần }ab+ac+bc=0,\text{ta có}\)
\(ab+ac=-bc\)
\(\Leftrightarrow a\left(b+c\right)=-bc\)
\(\Leftrightarrow a^2\left(b+c\right)=-abc\)
\(\Leftrightarrow2020=-abc\)
\(\Leftrightarrow abc=-2020\)
\(\text{Lại có: }ac+bc=-ab\)
\(\Leftrightarrow c\left(a+b\right)=-ab\)
\(\Leftrightarrow c^2\left(a+b\right)=-abc\)
\(\Leftrightarrow A=2020\)

18 tháng 11 2023

bài 2 bn nên cộng 3 cái lại

mà năm nay bn lên đại học r đúng k ???

23 tháng 12 2015

\(\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

=> a= b =c 

=> P = (1+1) ( 1+1)(1+1) = 2.2.2 =8

11 tháng 12 2017

cảm ơn

5 tháng 11 2018

Theo T/C dãy tỉ số bằng nhau 

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)

Tương tự ta có 

\(b+c=2a\)

\(c+a=2b\)

Xét \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)

\(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)