Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : đã cm bên kia
Bài 1: :|
we had điều này:
\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)
\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)
Xòng! bunyakovsky
P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{ab+1}\)
\(\Leftrightarrow\frac{1}{a^2+1}-\frac{1}{ab+1}+\frac{1}{b^2+1}-\frac{1}{ab+1}\ge0\)
\(\Leftrightarrow\frac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\frac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{-a\left(b^2+1\right)\left(a-b\right)+b\left(a-b\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)\left(-ab^2-a+a^2b+b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)\left[ab\left(a-b\right)-\left(a-b\right)\right]}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=1\end{matrix}\right.\)
a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)
#: Lỡ hẹn với Mincopxki rồi xài cách khác vậy :(
Đặt \(a=\frac{2x}{3};b=\frac{2y}{3};c=\frac{2z}{3}\)
Khi đó ta có \(xy+yz+xz\ge3\) và cần chứng minh
\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Áp dụng BĐT Cauchy-Schwarz ta có:\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\)
\(=\frac{15}{\sqrt{181}}Σ_{cyc}\sqrt{\left(\frac{4}{9}+\frac{9}{25}\right)\left(\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}\right)}\ge\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\)
Giờ chỉ cần chứng minh \(\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\ge\frac{\sqrt{181}}{5}\)
\(\Leftrightarrow20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)\ge\frac{543}{5}\)
Đặt tiếp \(x+y+z=3u;xy+yz+xz=3v^2\left(v>0\right)\)
Vì thế \(u\ge v\ge1\)và áp dụng BĐT C-S dạng Engel ta có:
\(20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)-\frac{543}{5}\)
\(\ge20\left(x+y+z\right)+81\cdot\frac{\left(1+1+1\right)^2}{Σ_{cyc}\left(2x+3\right)}-\frac{543}{5}=60u+\frac{729}{6u+9}-\frac{543}{5}\)
\(=3\left(20u+\frac{81}{2u+3}-\frac{181}{5}\right)=\frac{6\left(u-1\right)\left(100u+69\right)}{5\left(2u+3\right)}\ge0\)
Điều này đúng tức là ta có ĐPCM
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
\(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\Leftrightarrow\frac{1}{1+a}+\frac{1}{1+b}-\frac{2}{1+\sqrt{ab}}\ge0\)
\(\Leftrightarrow\left(\frac{1}{a+1}-\frac{1}{1+\sqrt{ab}}\right)+\left(\frac{1}{b+1}-\frac{1}{1+\sqrt{ab}}\right)\ge0\)
\(\Leftrightarrow\frac{\sqrt{ab}-a}{\left(a+1\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{ab}-b}{\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)
\(\Leftrightarrow\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\left(a+1\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)
\(\Leftrightarrow\frac{-\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)\left(b+1\right)+\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\left(a+1\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)
\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a\sqrt{b}+\sqrt{b}-b\sqrt{a}-\sqrt{a}\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)
\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\ge0\)(đúng với \(ab\ge1\))
Vậy \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)
Đẳng thức xảy ra khi a = b
Bài này: nên đặt a=x^2; b=y^2
Nội suy đỡ đau đầu hơn.