Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)
\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT Cô-si:
\(\frac{x}{y}+\frac{y}{x}\geq 2\)
\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
Áp dụng BĐT SVac-xơ kết hợp với Cô-si:
\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Cộng các BĐT trên :
\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)
Bài 2:
Áp dụng BĐT Svac-xơ:
\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)
\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)
Cộng theo vế và rút gọn :
\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)
Tương tự cộng lại là xong
Theo bất đẳng thức Cauchy, ta có:
\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)
\(\Rightarrow P\ge a+b+c+6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)
\(\Leftrightarrow minP=1+1+1+6=9\)
\(a^2+b^2+c^2=3\Rightarrow0< a;b;c< \sqrt{3}\)
Với mọi số thực \(x\in\left(0;\sqrt{3}\right)\) ta có đánh giá sau:
\(2x+\frac{1}{x}\ge\frac{x^2+5}{2}\)
Thật vậy, BĐT tương đương:
\(2\left(2x^2+1\right)-x\left(x^2+5\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2-x\right)\ge0\) (luôn đúng với mọi \(x\in\left(0;\sqrt{3}\right)\))
Áp dụng: \(P=2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{a^2+b^2+c^2+15}{2}=9\)
\(P_{min}=9\) khi \(a=b=c=1\)
1)
\(2x^2-2xy+5y^2-2x-2y+1=0.\)
\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(x^2-4xy+4y^2\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(2y-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\2y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1}{3}\\x=\frac{2}{3}\end{cases}}}\)
\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-5xy=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=2y\end{cases}}\)
Mặt khác : x > y > 0 \(\Rightarrow x=2y\)
Ta có : \(E=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
a) Dễ tự làm đi
b) Xét 1 + a2 = ab + bc + ca + a2
= b(c + a) + a(c + a)
= (c + a)(b + a)
Cmtt ta có : 1 + b2 = (c + b)(a + b)
1 + c2 = (b+c)( a + c)
Do đó : A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+b\right)\left(b+a\right)\left(c+a\right)\left(a+c\right)\left(b+c\right)}\)= 1
Xét a2 + 2bc - 1 = a2 + 2bc - ab - bc - ca
= a2 - ab + bc - ca
= a(a-b) - c(a-b)
= (a-b)(a-c)
Cmtt ta cũng có : b2 + 2ac - 1 = (b-c)(b-a)
c2 + 2ab - 1 = (c-a)(c-b)
Do đó : \(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
= -1
tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
\(P=2+\dfrac{2}{b}+a+\dfrac{a}{b}+2+\dfrac{2}{a}+b+\dfrac{b}{a}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(a+\dfrac{1}{2a}\right)+\left(b+\dfrac{1}{2b}\right)+\left(\dfrac{3}{2a}+\dfrac{3}{2b}\right)+4\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{a.\dfrac{1}{2a}}+2\sqrt{b.\dfrac{1}{2b}}+2\sqrt{\dfrac{3}{2a}.\dfrac{3}{2b}}+4=6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\)
Ta lại có: \(a^2+b^2\ge2\sqrt{a^2.b^2}=2ab\left(BĐT.Cauchy\right)\Rightarrow2\left(a^2+b^2\right)\ge4ab\Rightarrow\sqrt{ab}\le\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow P\ge6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\ge6+2\sqrt{2}+\dfrac{3}{\dfrac{\sqrt{2}}{2}}=6+5\sqrt{2}\)
\(minP=6+5\sqrt{2}\Leftrightarrow a=b=\dfrac{\sqrt{2}}{2}\)