K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

\(P=2+\dfrac{2}{b}+a+\dfrac{a}{b}+2+\dfrac{2}{a}+b+\dfrac{b}{a}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(a+\dfrac{1}{2a}\right)+\left(b+\dfrac{1}{2b}\right)+\left(\dfrac{3}{2a}+\dfrac{3}{2b}\right)+4\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{a.\dfrac{1}{2a}}+2\sqrt{b.\dfrac{1}{2b}}+2\sqrt{\dfrac{3}{2a}.\dfrac{3}{2b}}+4=6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\)

Ta lại có: \(a^2+b^2\ge2\sqrt{a^2.b^2}=2ab\left(BĐT.Cauchy\right)\Rightarrow2\left(a^2+b^2\right)\ge4ab\Rightarrow\sqrt{ab}\le\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow P\ge6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\ge6+2\sqrt{2}+\dfrac{3}{\dfrac{\sqrt{2}}{2}}=6+5\sqrt{2}\)

\(minP=6+5\sqrt{2}\Leftrightarrow a=b=\dfrac{\sqrt{2}}{2}\)

 

20 tháng 8 2018

câu hỏi ko tl cx thấy xàm xàm xàm xmà

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 1:

\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)

\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT Cô-si:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

Áp dụng BĐT SVac-xơ kết hợp với Cô-si:

\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Cộng các BĐT trên :

\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 2:

Áp dụng BĐT Svac-xơ:

\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)

\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)

Cộng theo vế và rút gọn :

\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

30 tháng 5 2018

UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)

Tương tự cộng lại là xong

29 tháng 5 2018

Theo bất đẳng thức Cauchy, ta có:

\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)

\(\Rightarrow P\ge a+b+c+6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)

\(\Leftrightarrow minP=1+1+1+6=9\)

NV
4 tháng 12 2020

\(a^2+b^2+c^2=3\Rightarrow0< a;b;c< \sqrt{3}\)

Với mọi số thực \(x\in\left(0;\sqrt{3}\right)\) ta có đánh giá sau:

\(2x+\frac{1}{x}\ge\frac{x^2+5}{2}\)

Thật vậy, BĐT tương đương:

\(2\left(2x^2+1\right)-x\left(x^2+5\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2-x\right)\ge0\) (luôn đúng với mọi \(x\in\left(0;\sqrt{3}\right)\))

Áp dụng: \(P=2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{a^2+b^2+c^2+15}{2}=9\)

\(P_{min}=9\) khi \(a=b=c=1\)

1 tháng 2 2018

1)

\(2x^2-2xy+5y^2-2x-2y+1=0.\)

\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(x^2-4xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(2y-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\2y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1}{3}\\x=\frac{2}{3}\end{cases}}}\)

8 tháng 2 2020

\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-5xy=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=2y\end{cases}}\)

Mặt khác : x > y > 0 \(\Rightarrow x=2y\) 

Ta có : \(E=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

8 tháng 2 2020

a) Dễ tự làm đi

b) Xét 1 + a2 = ab + bc + ca + a2 

                      = b(c + a) + a(c + a)

                      = (c + a)(b + a)

Cmtt ta có : 1 + b2 = (c + b)(a + b)

                    1 + c2 = (b+c)( a + c)

Do đó : A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+b\right)\left(b+a\right)\left(c+a\right)\left(a+c\right)\left(b+c\right)}\)= 1

Xét a2 + 2bc - 1 = a2 + 2bc - ab - bc - ca

                           = a2 - ab + bc - ca

                           = a(a-b) - c(a-b)

                           = (a-b)(a-c)

Cmtt ta cũng có : b2 + 2ac - 1 = (b-c)(b-a)

                             c2 + 2ab - 1 = (c-a)(c-b)

Do đó : \(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

                   \(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

                     = -1

7 tháng 6 2017

tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13