Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\dfrac{1}{2}\ge\sqrt{ab}\Rightarrow\dfrac{1}{4}\ge ab\)
Lại có theo AM-GM ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(\Rightarrow\dfrac{3}{a^2+b^2}\ge\dfrac{3}{2ab}\)
\(\Rightarrow A\ge\dfrac{3}{2ab}+\dfrac{2}{ab}\ge\dfrac{3}{2\cdot\dfrac{1}{4}}+\dfrac{2}{\dfrac{1}{4}}=14\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{2}\)
Vậy \(A_{Min}=14\) khi \(a=b=\dfrac{1}{2}\)
Cauchy Schwars
\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)
\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(M_{min}=9\)
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)
Nhân (1),(2) và (3) theo vế:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi a=b=c=1/2
Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)
Ta có
\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)
\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)
Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)
và \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)
Nhân (1), (2), (3) với nhau:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
Áp dụng bất đẳng thức Cauchy - Schwarz, ta được:
\(B=\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge\dfrac{\left(1+1+1\right)^2}{1+a+1+b+1+c}\)
\(\Rightarrow B\ge\dfrac{9}{3+a+b+c}\) (1)
Vì \(a+b+c\le3\Rightarrow3+a+b+c\le6\)
\(\Rightarrow\dfrac{9}{3+a+b+c}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)
Từ (1),(2) \(\Rightarrow B\ge\dfrac{3}{2}\)
=> MinB = \(\dfrac{3}{2}\Leftrightarrow a=b=c=1\)
Vậy MinB = \(\dfrac{3}{2}\) khi a = b = c = 1
Theo BĐT Cauchy ta có :
\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge\dfrac{9}{3+a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)
Vậy \(MAX_B=\dfrac{3}{2}\)
Dấu \("="\) xảy ra khi \(a=b=c=1\)
Áp dụng bất đẳng thức AM-GM ta có:
\(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)
\(\Rightarrow ab+\dfrac{1}{ab}\ge2.\sqrt{1}=2.1=2\)
Dâu "=" sảy ra khi và chỉ khi \(a=b=1\)
Vậy GTNN của biểu thức là 2 đạt được khi và chỉ khi \(a=b=1\)
Chúc bạn học tốt!!!
Áp dụng bđt AM-GM ta có:
\(1\ge a+b\ge2\sqrt{ab}\) \(\Leftrightarrow1\ge4ab\)\(\Leftrightarrow\dfrac{1}{4}\ge ab\)
\(S=ab+\dfrac{1}{ab}=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{ab.\dfrac{1}{16ab}}+\dfrac{15}{16ab}\) \(\Leftrightarrow S\ge2.\dfrac{1}{4}+\dfrac{15}{16ab}=\dfrac{1}{2}+\dfrac{15}{16ab}\ge\dfrac{1}{2}+\dfrac{15}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{1}{2}\)