K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

\("a+b"^2\ge4ab=4\Rightarrow a+b\ge2\)

\(a^2+b^2\ge\frac{"a+b"^2}{2}\)

Nên A \(\ge\frac{3"a+b"^2}{2}+\frac{4}{a+b}=\frac{"a+b"^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}-\frac{4}{a+b}+"a+b"^2\ge6-2+4=8\)

Nên Min \(A=8\)khi \(a=b=1\)

P/s: Thay dấu Ngođặc Kép thành Ngoặc Đơn nhé

26 tháng 9 2017

Mình thấy thay a=b=1 vào ko đc 8 mak đc 4

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

6 tháng 7 2020

Ta dễ có:

\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)

\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)

\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)

\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)

Đẳng thức xảy ra tại \(a=b=1\)

hmm check hộ mình nhá

8 tháng 4 2019

\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :

\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)

\(\Rightarrow a+b-2\le\sqrt{8}-2\)

\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)

8 tháng 4 2019

Do x ; y không âm , \(x^2+y^2=1\)

\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)

\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)

\(x,y\ge0\Rightarrow xy\ge0\)

Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)

\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)

\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)

\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)

\(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)

19 tháng 5 2017

2a² + b²/4 + 1/a² = 4 
⇔ 8a⁴ + a²b² + 4 = 16a² 
⇔ a²b² = -8a⁴ + 16a² - 4 
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4 
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4 
⇔ │ab│ ≤ 2 
⇔ -2 ≤ ab ≤ 2 

--> A = ab + 2011 ≥ 2009 

Dấu " = " xảy ra ⇔ 
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1 
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2 

8 tháng 9 2016

ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^

10 tháng 9 2016

nè  đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)