K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

Nếu a=c=2 ; b=d=1 thì:

\(\frac{2}{1}=\frac{2}{1}=\left(\frac{2-1}{2-1}\right)^2\left(vô\text{ }lí\right)\)

sai đề

CÁC CẬU ƠI GIÚP MIK VS!!!!!!

12 tháng 6 2018

Cho hai số hữu tỉ a/b và c/d,Chứng minh nếu a/b < c/d thì ad < bc,Chứng minh nếu ad < bc thì a/b < c/d,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Làm nhắn gọn hơn thì

1
a/b < c/d
=> ad/bd < cb/db
=> ad < cb

2
​ad < cb
=>ad /bd < cb/bd

Chúc pn hc tốt

12 tháng 6 2015

Ta có : \(\frac{a}{b}<\frac{c}{d}\)

           \(\Rightarrow\frac{ad}{bd}<\frac{bc}{bd}\)         

           \(\)\(\Rightarrow\) ad < bc

đúng nha !!!

 

12 tháng 6 2015

Để a/b , a+c/b+d thi a(b+d)< b (a+c)<=> ab+ad < ab +bc <=>ab < bc <=> a/b < c/d

Để a+c/b+d < c/d thì (a+c).đ < (b+d).c <=> ab+cd < bc + cd <=> ad  < bc <=> a/b < c/d

7 tháng 7 2016

a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết: 
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì 
b. Hãy viết ba số hữu tỉ xen giữa và 
Giải: a) Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b
a(b + d) < b(c + a) (2)
Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
d(a + c) < c(b + d) (3) Từ (2) và (3) ta có: 

            a.d<b.c

Chúc bạn học tốt!!!! ^-^

22 tháng 6 2015

Ta có:a/b<c/d =>ad<bc                    (1)

Thêm ab vào (1) ta đc:

ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d             (2)

Thêm cd vào 2 vế của (1), ta lại có:

ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d               (3)

Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d

26 tháng 8 2019

help

12 tháng 7 2016

1.

Nếu \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\)

\(\Leftrightarrow ad< cd\left(dpcm\right)\)

2

Nếu \(ad< bc\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

\(\Leftrightarrow\frac{a}{b}< \frac{c}{d}\left(dpcm\right)\)

25 tháng 9 2017

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)

Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)