Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
1)Xét \(VT=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)
Suy ra Đpcm
2)Xét \(VT=\frac{3\left(bk\right)^2+\left(dk\right)^2}{3b^2+d^2}=\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(1\right)\)
Xét \(VP=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)
Từ (1) và (2) suy ra Đpcm
Đăt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
Khi đó \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{3.\left(bk\right)^2+\left(dk^2\right)}{3.b^2+d^2}=\frac{3b^2.k^2+d^2.k^2}{3b^2+d^2}=\frac{k^2.\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\) (1)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2) ta có \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)
\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)
\(=2k^2-k^2=k^2\)(1)
và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)
Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)
b)\(\frac{ac}{bd}=\frac{bkdk}{bd}=k.k=k^2\)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)
=> \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Đặt k ( với k khác 0 , thuộc Z ) sao cho \(\frac{a}{b}=\frac{c}{d}=k\) => \(a=kb\) / \(c=dk\) .
a) Thế vào \(\frac{5a-b}{3a+2b}\) , ta có \(\frac{5kb-3b}{3kb+2b}\)\(=\frac{b\left(5k-3\right)}{b\left(3k+2\right)}\)\(=\frac{5k-3}{3k+2}\) / \(\frac{5c-3d}{3c+2d}=\frac{5dk-3d}{3dk-2d}=\frac{d\left(5k-3\right)}{d\left(3k+2\right)}=\frac{\left(5k+3\right)}{\left(3k+2\right)}\)
=> VT = VP
Ta có:\(\frac{3a+b+c+d}{a}=\frac{a+3b+c+d}{b}=\frac{a+b+3c+d}{c}=\frac{a+b+c+3d}{d}\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
\(TH1:a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)
\(\Rightarrow Q=\left(\frac{-\left(c+d\right)}{c+d}\right)^2+\left(\frac{-\left(a+d\right)}{a+d}\right)^2+\left(\frac{c+d}{-\left(c+d\right)}\right)^2+\left(\frac{a+d}{-\left(a+d\right)}\right)^2\)
\(\Rightarrow Q=\left(-1\right)^2\cdot4=1\cdot4=4\)
\(TH2:a=b=c=d\)
\(\Rightarrow Q=\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2=1^2\cdot4=1\cdot4=4\)
Vậy Q=4
Ta có: a/b = c/d => a/b.c/d = c/d.c/d (vì các p/s nào bằng nhau nhân với mấy cũng bằng nhau)
hay: ac/d = c^2/d^2 (1)
Lại có: a/b = c/d = a^2/b^2 = c^2/d^2 = a^2+c^2/b^2+d^2 (2)
Từ (1) và (2) => ac/bd = a^2+c^2/b^2/d^2