K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

\(a,\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

có : \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\)

\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

cứ đặt dạng tổng quát rồi làm tương tự

20 tháng 10 2019

Theo bài ra ta có : 

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)

\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại) 

Nếu a + b + c + d \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)

=> a = b = c = d (đpcm)

22 tháng 6 2016

tìm j ???

22 tháng 6 2016

Ta có: a/2bxb/2cxc/2dxd/2a=1/2^4=1/16

mà các phân số trên = nhau => a=b=c=d

9 tháng 4 2016

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow a=\frac{2b}{2}=b\)                       \(c=\frac{2d}{2}=d\)

\(b=\frac{2c}{2}=c\)                               \(d=\frac{2a}{2}=a\)

\(\Rightarrow a=b=c=d\)

Ta có: \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)

\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)

\(=\frac{4a}{2a}=2\)

23 tháng 8 2017

A ₫ 2 day ban so yeoung cheing nhe. Cac ban kcho mik nha

26 tháng 9 2018

1) Ta có:
\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\)
=>a.(c+d) = c.(a+b)
a.c+a.d = a.c+b.d
Do đó a.d=b.d
=>\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)( đpcm)

Câu 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)

\(\dfrac{-5a+3c}{-5b+3d}=\dfrac{-5bk+3dk}{-5b+3d}=k\)

=>\(\dfrac{3a+2c}{3b+2d}=\dfrac{-5a+3c}{-5b+3d}\)

b: \(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)

\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{c\left(2c-a\right)}{d\left(2d-b\right)}=\dfrac{dk}{d}\cdot\dfrac{2dk-bk}{2d-b}=k^2\)

=>\(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)