K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

B-A=7n+1+3(n+1)-1-7n-3n+1

=7n+1+3n+3-1-7n-3n+1

=7n+1-7n+3

=7n.6+3

lại có:

3A=3.7n+9n-3

=>B-A+3A=B+2A=7n.6+3+7n.3+9m-3

=9.7n+9n chia hết cho 9

mà 2A chia hết cho 9

=>B chia hết cho 9

=>đpcm

13 tháng 5 2017

Ta có:

\(B=7^{n+1}+3\left(n+1\right)-1\)

    \(=7.7^n+3n+2\)

     \(=7.7^n+21n-18n-7+9\)

      \(=\left(7.7^n+21n-7\right)-\left(18n-9\right)\)

      \(=7\left(7^n+3n-1\right)-9\left(2n-1\right)\)

       \(=7B-9\left(2n-1\right)\)   (*)

Suy ra nếu B chia hết cho 9 thì \(7B-9\left(2n-1\right)\) cũng chia hết cho 9 (tức A cũng chia hết cho 9).

Ngược lại, nếu A chia hết cho 9 thì từ (*) suy ra \(7B=A+9\left(2n-1\right)\) cũng chia hết cho 9. Vì 7 và 9 là hai số nguyên tố cũng nhau nên B cũng chia hết cho 9.

12 tháng 5 2017

Xét

-n = 1=> 7^1+3.1-1 = 9 chia hết cho 9
-n = 2 => 7^2+3.2-1 = 54 chia hết cho 9
- Giả sử A chia hết cho 9 đúng với n = k-1  nghĩa là 7k-1 +3(k -1)-1 chia hết cho 9. Ta chứng minh bài toán đúng với n = k.
- Với n = k:
=> A = 7k + 3k - 1 = 7[7k-1 + 3 (k-1) -1] +3
=7[7^(k-1)+3(k-1)-1]-18(k-1) + 9
Vì:
 7^(k-1)+3(k-1)-1 chia hết cho 9
 18(k-1) chia hết cho 9
 9 chia hết cho 9
nên 7^k+3k-1 chia hết cho 9 (đpcm).

Ý B làm tương tự thôi .....còn lại bạn tự làm nhé ^^

24 tháng 11 2016

b)

a=3n+1+3n-1=3n(3+1)-1=3n*4-1

Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}

=>{3n*4}E{2;8;15;29;36;...}

=>3nE{9;...} => nE{3;...}

b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1

Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}

=>{3N*5}E{0;6;13;27;34;...}

=>3NE{0;...}

=>NE{0;...}

=>đpcm(cj ko chắc cách cm này)

5 tháng 6 2016

a)Đặt \(E_n=n^3+3n^2+5n\)

  • Với n=1 thì E1=9 chia hết 3
  • Giả sử En đúng với \(n=k\ge1\) nghĩa là:

\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)

  • Ta phải chứng minh Ek+1 chia hết 3,tức là:

Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3

Thật vậy:

Ek+1=(k+1)3+3(k+1)2+5(k+1)

       =k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)

Theo giả thiết quy nạp thì Ek chia hết 3

ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3

=>Ek chia hết 3 với mọi \(n\in N\)*

30 tháng 8 2019

c) n^3-n+12n

= n(n^2-1)+12n

n(n-1)(n+1)+12n

Ta thấy 3 số tự nhiên liên tiếp (n-1)n(n+1) ít nhất có 1 số chia hết cho 2, và ít nhất có 1 số chia hết cho 3, suy ra tích chia hết cho 6 mà 12n =6x2n chia hết cho 6 suy ra điều phải chứng minh

28 tháng 1 2018

1

undefined

AH
Akai Haruma
Giáo viên
28 tháng 1 2018

Lời giải:

Câu 1)

Ta có: \(A_n=n^3+3n^2-n-3=n^2(n+3)-(n+3)\)

\(A_n=(n^2-1)(n+3)=(n-1)(n+1)(n+3)\)

Do $n$ lẻ nên đặt \(n=2k+1\)

\(A_n=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)

\(A_n=8k(k+1)(k+2)\)

Do \(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên tích của chúng chia hết cho $3$

\(\Rightarrow A_n=8k(k+1)(k+2)\vdots 3(1)\)

Mặt khác \(k,k+1\) là hai số tự nhiên liên tiếp nên \(k(k+1)\vdots 2\)

\(\Rightarrow A_n=8k(k+1)(k+2)\vdots (8.2=16)(2)\)

Từ \((1); (2)\) kết hợp với \((3,16)\) nguyên tố cùng nhau nên

\(A_n\vdots (16.3)\Leftrightarrow A_n\vdots 48\)

Ta có đpcm.

Bài 2:

\(A_n=2n^3+3n^2+n=n(2n^2+3n+1)\)

\(A_n=n[2n(n+1)+(n+1)]=n(n+1)(2n+1)\)

Vì \(n,n+1\) là hai số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow A_n\vdots 2(1)\)

Bây giờ, xét các TH sau:

TH1: \(n=3k\Rightarrow A_n=3k(n+1)(2n+1)\vdots 3\)

TH2: \(n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3\)

\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)

TH3: \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)

\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)

Vậy trong mọi TH thì \(A_n\vdots 3(2)\)

Từ (1); (2) kết hợp với (2,3) nguyên tố cùng nhau suy ra \(A_n\vdots 6\)

Ta có đpcm.

10 tháng 10 2018

\(A=1+3+3^2+3^3+...+3^{3n}+3^{3n+1}+3^{3n+2}\)

\(A=1.\left(1+3+9+\right)+3^3.\left(1+3+9\right)+3^6.\left(1+3+9\right)+...+3^{3n}.\left(1+3+9\right)\)

\(A=1.13+3^3.13+3^6.13+....+3^n.13\)

\(A=13.\left(1+3^3+3^6+...+3^{3n}\right)\)\(13\)

Vậy \(A\)\(13\)\(n\)

22 tháng 8 2015

=3^n.9+3^n.3+2^n.8+2^n.4

=3^n[9+3]+2^n[8+4]

=3^n.12+2^n.12chia hết cho 6[vị 12 chia hết cho 6]

b,=12^8.9^12

=2^16.3^8.3^24

=2+16.3^32

18^16=2^16.3^32

suy ra bằng nhau

22 tháng 8 2015

\(12^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}==2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)

28 tháng 9 2017

a, \(10^9+10^8+10^7⋮222\)

Ta có:\(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)\)

\(=10^7.111=5^7.2^7.111=5^7.2^6.2.111=5^7.2^6.222\)

Vì 222\(⋮222\Rightarrow5^7.2^6.222⋮222\)

Vậy \(10^9+10^8+10^7⋮222\)

b) 817 - 279 - 913 45

\(\)Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}=3^{26}.\left(3^2-3-1\right)\)

\(=3^{26}.5=3^{24}.3^2.5=3^{24}.45\)

\(45⋮45\Rightarrow3^{24}.45⋮45\)

Vậy \(81^7-27^9-9^{13}⋮45\)

CHÚC BẠN HỌC TỐT!!

28 tháng 9 2017

a) \(10^9+10^8+10^7\)

\(=10^7\left(10^2+10+1\right)\)

\(=5^7.2^7.\left(100+10+1\right)\)

\(=5^7.2^6.2\left(100+10+1\right)\)

\(=5^7.2^6.2.111\)

\(=5^7.2^6.222⋮222\)