Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a,
Gọi d là ƯCLN(6n+5;4n+3)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\)
\(\Rightarrow12n+10-\left(12n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
b, Vì số nguyên dương nhỏ nhất là số 1
=> x+ 2016 = 1
=> x= 1-2016
x= - 2015
Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)
\(6n+5⋮d\Rightarrow12n+10⋮d\)
\(4n+3⋮d\Rightarrow12n+9⋮d\)
Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)
Vậy ta có đpcm
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
dễ :D
6n-3/3n+1=6n+2-5/3n+1=2(3n+1)-5/3n+1=2(3n+1)/3n+1+5/3n+1=2+5/3n+1=>3n+1 thuộc Ư(5) mà Ư(5)={1;-1;5;-5}
=> n=0;-2/3( loại) ;4/3( loại); -2
Gọi ƯCLN(3n+4;n+1) là d.
=>3n+4 chia hết cho d và n+1 chia hết cho d.
=>3.(n+1) chia hết cho d
=>3n+4 ___________d và 3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>ƯCLN(3n+4;n+1)=1 nên 2 số 3n+4 và n+1 là 2 số nguyên tố cùng nhau.
a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)
Vì 6n+1 là bội của 3n-1 =>6n+1 chia hết cho 3n-1 và 3n-1 chia hết cho 3n-1 => 2(3n-1)=6n-2 chia hết cho 3n-1
Ta có : 6n+1-(6n-2) chia hết cho 3n-1
<=> 6n+1-6n+2 chia hết cho 3n-1
<=>(6n-6n)+1+2 chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=>3n-1 thuộc {1;3;-1;-3}
=> 3n thuộc {2;4;0;-1}
=> n thuộc {2/3;4/3;0;-1/3}
Mà n là số nguyên => n=0
Vậy : n=0
NHÉ !
6n + 1 ∈ B ( 3n - 1 ) <=> 6n + 1 ⋮ 3n - 1
=> 3n + 3n - 1 - 1 + 3 ⋮ 3n - 1 => ( 3n - 1 ) + ( 3n - 1 ) + 3 ⋮ 3n - 1
= 2.( 3n - 1 ) + 3 ⋮ 3n - 1
Vì 3n - 1 ⋮ 3n - 1 . Để 2.( 3n - 1 ) + 3 ⋮ 3n - 1 <=> 3 ⋮ 3n - 1
=> 3n - 1 ∈ B ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
Ta có : 3n - 1 = - 3 => 3n = - 2 => n = - 2/3 ( loại )
3n - 1 = - 1 => 3n = 0 => n = 0 ( chọn )
3n - 1 = 1 => 3n = 2 => n = 2/3 ( loại )
3n - 1 = 3 => 3n = 4 => n = 4/3 ( loại )
Vậy n ∈ { 0 }
no not
Vay (6n+42) chia het cho 6n
Ma 6n chia het cho 6n
Nen 6n € Ư (42)
Ma Ư (42)={1;2;3;6;7;14;21;42)
Vi 6,42 cha het cho 6
Nen 6n€ {6,42)
=> n=1 hoac n=7