K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Ta có: 

\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2\left(5m\right)^2-m^2}{\left(4m\right)^2+3\left(5m\right)^2-6m^2}=\frac{16m^2+50m^2-m^2}{16m^2+75m^2-6m^2}\)

\(=\frac{\left(16+50-1\right)m^2}{\left(16+75-6\right)m^2}=\frac{65m^2}{85m^2}=\frac{13}{17}\)

19 tháng 12 2016

cam on

3 tháng 3 2017

đọc đề chả hiểu gì cả...

4 tháng 3 2017

z tui moi hoi

6 tháng 12 2016

Đáp án là : \(\frac{13}{17}\)

2 tháng 3 2017

a) Tìm GTLN của \(\dfrac{1}{x^2+2010}\)

Để GTBT đạt lớn nhất \(\Leftrightarrow x^2+2010\) đạt giá trị nhỏ nhất.

\(x^2\ge0\forall x\), \(2010\ge0\)

Vậy giá trị nhỏ nhất của \(x^2+2010=2010\Leftrightarrow x=0\)

\(\Rightarrow\) GTLN của biểu thức \(\dfrac{1}{x^2+2010}=\dfrac{1}{2010}\Leftrightarrow x^2=0\)

b) Xét dấu của hai biểu thức :

+) Biểu thức (1) : \(2a^3bc\)

+) Biểu thức (2) : \(-3a^5b^3c^2\)

Ta nhận thấy rằng ở (1), số mũ của a là số mũ lẻ ; ở (2) thì số mũ của a là số mũ lẻ => a ở biểu thức (1) và a ở biểu thức (2) cùng dấu.

Ta lại thấy rằng ở (1), số mũ của b là số mũ lẻ và ở (2) cũng là số mũ lẻ => b ở biểu thức (1) và (2) cùng dấu.

Lại có, biểu thức (1) có số 2 là số nguyên dương, biểu thức (2) có số -3 là số nguyên âm => trái dấu.

Vậy c mang dấu dương (+) thì biểu thức \(2a^3bc\) trái dấu với biểu thức \(-3a^5b^3c^2\)

2 tháng 3 2017

a) \(x^2\ge0\Rightarrow x^2+2010\ge2010\Rightarrow\dfrac{1}{x^2+2010}\le\dfrac{1}{2010}\)

=> \(\dfrac{1}{x^2+2010}\) đạt giá trị lớn nhất là \(\dfrac{1}{2010}\) khi x2=0 <=> x=0

b) c có dấu âm

-----

bạn ơi cho mình hỏi câu hỏi này là vio vòng mấy đấy?

a: \(=\left(15x^2y^3-12x^2y^3\right)+\left(7x^2-12x^2\right)+\left(-8x^3y^2+11x^3y^2\right)\)

\(=3x^2y^3-5x^2+3x^3y^2\)

bậc là 5

b: \(=\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)

\(=\dfrac{5}{2}x^5y+\dfrac{7}{3}xy^4-\dfrac{1}{4}x^2y^3\)

Bậc là 6

c: \(=5xy-2xy+4xy-y^2+3x-2y\)

\(=-y^2+3x-2y+7xy\)

Bậc là 2

a: \(A=\left(5xy-2xy+1.3xy\right)+3x-2y-3.5y^2\)

\(=4.3xy+3x-2y-3.5y^2\)

b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=-\dfrac{7}{8}ab^2+\dfrac{3}{8}a^2b\)

c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

14 tháng 4 2018

a) \(A=5xy-3,5y^2-2xy+1,3xy+3x-2y\)

\(=\left(5xy-2xy+1,3xy\right)-3,5y^2+3x-2y\)

\(=-3,5y^2+4,3xy+3x-2y\)

b) \(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)

\(=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=-\dfrac{7}{8}ab^2+\dfrac{3}{8}a^2b\)

c) \(2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)

\(=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)