Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(F=\frac{a^6}{b^3+c^3}+\frac{b^6}{c^3+a^3}+\frac{c^6}{a^3+b^3}\)
\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)}=\frac{a^3+b^3+c^3}{2}\)
Áp dụng BĐT AM-GM ta có:
\(a^3+\frac{1}{27}+\frac{1}{27}\ge3\sqrt[3]{a^3\cdot\frac{1}{27}\cdot\frac{1}{27}}=3\cdot\frac{a}{9}=\frac{a}{3}\)
Tương tự ta cũng có: \(b^3+\frac{1}{27}+\frac{1}{27}\ge\frac{b}{3};c^3+\frac{1}{27}+\frac{1}{27}\ge\frac{c}{3}\)
\(\Rightarrow a^3+b^3+c^3+\frac{2}{9}\ge\frac{a+b+c}{3}=\frac{1}{3}\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)
\(\Rightarrow F\ge\frac{a^3+b^3+c^3}{2}\ge\frac{\frac{1}{9}}{2}=\frac{1}{18}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)(BĐT Svarxơ)\(\ge\frac{\frac{1}{9}\left(a+b+c\right)^4}{ab+bc+ca}\)(BĐT Bunhiacoxki)
Có: \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow ab+bc+ca\le3\)
\(\Rightarrow P\ge\frac{\frac{1}{9}\left(a+b+c\right)^4}{3}\)\(=\frac{1}{27}\left(a+b+c\right)^4\)
Dễ thấy \(P\ge3\)
Cần C/m \(\left(a+b+c\right)^4\ge81\)
\(\Rightarrow a+b+c\ge3\)
mà\(ab+bc+ca\le3\) kết hợp với gt nên ta có điều đó LĐ.
Vậy Pmin=3\(\Leftrightarrow a=b=c=1\)
Ta luôn có: \(ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow a+b+c+\frac{\left(a+b+c\right)^2}{3}\ge6\)
\(\Rightarrow\left(a+b+c\right)^2+3\left(a+b+c\right)-18\ge0\)
\(\Rightarrow\left(a+b+c-3\right)\left(a+b+c+6\right)\ge0\)
\(\Rightarrow a+b+c-3\ge0\) (do \(a+b+c+6>0\))
\(\Rightarrow a+b+c\ge3\)
\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{3}\right)^2}{\frac{\left(a+b+c\right)^2}{3}}=\frac{\left(a+b+c\right)^2}{3}\ge3\)
\(\Rightarrow P_{min}=3\) khi \(a=b=c=1\)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
Bài 3:(dài quá,đăng từ câu):
a)Từ giả thiết suy ra \(\frac{\left(a+b+c\right)^2}{3}\ge3\Rightarrow a+b+c\ge3\)
BĐT \(\Leftrightarrow\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)
Mà \(VT\ge3\left(a^3+b^3+c^3\right)\). Do đó ta chứng minh một BĐT chặt hơn là:
\(3\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(\Leftrightarrow\left(a^3+b^3+c^3-3abc\right)+2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(c+b\right)+ca\left(c+a\right)\right]\) (*)
Để ý rằng theo Cô si: \(a^3+b^3+c^3\ge3abc\) (1) và
\(2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\ge0\) (2)
Do \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\)
\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\). Tương tự với hai BĐT còn lại suy ra (2) đúng (3)
Từ (1) và (2) và (3) suy ra (*) đúng hay ta có đpcm.
Bài ngắn làm trước:
Bài 5: Dự đoán xảy ra đẳng thức khi a=1; b=2/3; c=4/3. Ta biến đổi như sau:
\(A=\left(4a^2+4\right)+\left(6b^2+\frac{8}{3}\right)+\left(3c^2+\frac{16}{3}\right)-12\)
\(\ge2\sqrt{4a^2.4}+2\sqrt{6b^2.\frac{8}{3}}+2\sqrt{3c^2.\frac{16}{3}}-12\)
\(=8\left(a+b+c\right)-12=8.3-12=12\)
Dấu "=" xảy ra khi ....
Bài này dùng wolfram alpha cho lẹ, đi thi không dùng được thì em dùng "cân bằng hệ số"