K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

............................

.........................???????/

NV
21 tháng 3 2022

Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)

Ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)

Tương tự:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)

Cộng vế:

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)

\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)

4 tháng 5 2017

\(\left(3c-2\right)^2+2013\ge2013\)

4 tháng 5 2017

sai rồi bạn

không dễ vậy đâu

24 tháng 12 2020

Có :

\(\left(a^2+4b^2+9c^2\right).\left(1+\frac{1}{4}+\frac{1}{9}\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{49}{36}\ge\left(a+b+c\right)^2\)

\(\Rightarrow A\le\frac{7}{6}\)

22 tháng 1 2021

c2 : \(\frac{36a^2}{36}+\frac{36b^2}{9}+\frac{36c^2}{4}\ge\frac{\left(6a+6b+6c\right)^2}{49}=\frac{6^2\left(a+b+c\right)^2}{7^2}\)

\(< =>\frac{6^2\left(a+b+c\right)^2}{7^2}\le1< =>a+b+c\le\frac{7}{6}\)