K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7 2020

Lời giải:

$A=4a^2b^2-(a^2+b^2-c^2)^2=(2ab)^2-(a^2+b^2-c^2)^2$

$=(2ab-a^2-b^2+c^2)(2ab+a^2+b^2-c^2)$

$=[c^2-(a^2+b^2-2ab)][(a^2+b^2+2ab)-c^2]$

$=[c^2-(a-b)^2][(a+b)^2-c^2]$

$=(c-a+b)(c+a-b)(a+b-c)(a+b+c)$

Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác thì $c-a+b; c+a-b; a+b-c>0$

Mặt khác $a+b+c>0$ với mọi $a,b,c>0$

Do đó $A>0$ (đpcm)

20 tháng 7 2018

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

     \(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)

      \(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)

       \(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)

        \(=-a^4+2a^2b^2-b^4-c^4+2b^2c^2+2c^2a^2\)

        \(=-\left(a^2-b^2\right)^2-c^2\left(c^2-2b^2-2a^2\right)>0\)

Vậy A > 0

14 tháng 8 2019

tại sao cái cuối cùng lại lớn hơn 0 ???
 

31 tháng 12 2015

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

                                                                                 \(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)

                                                                                \(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)>0\)

                                                                                                        (bất đẳng thức tam giác)

\(\Rightarrow\) \(4a^2b^2>\left(a^2+b^2-c^2\right)^2\)

Thấy tao siêu chưa, mới có lớp 6 mà làm được toán lớp 8 nha ( tick nhiều nhiều nha)

31 tháng 12 2015

thằng dinh quoc anh siêu cái gì! Mày nhờ chị mày làm hộ mà còn vênh vênh váo váo!

28 tháng 11 2019

Vì a,b,c là ba cạnh của tam giác nên \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}}\)

hay \(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)(1)

Ta có: \(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)

Vì a + b + c > 0 ( Vì a,b,c là ba cạnh của tam giác kết hợp với (1) thì:

\(\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)>0\)

hay A > 0 (đpcm)

1 tháng 10 2016

Tuyển tập Bất đẳng thức  Trần Sĩ Tùng  4 III. Chứng minh BĐT dựa vào BĐT Bunhiacôpxki  1. Chứng minh: (ab + cd)2 £ (a2 + c2)(b2 + d2)    BĐT Bunhiacopxki 2. Chứng minh: + £sinx cosx 2 3. Cho 3a – 4b = 7.  Chứng minh: 3a2 + 4b2 ³ 7. 4. Cho 2a – 3b = 7.  Chứng minh:  3a2 + 5b2 ³ 72547. 5. Cho 3a – 5b = 8.  Chứng minh:  7a2 + 11b2 ³ 2464137. 6. Cho a + b = 2.  Chứng minh:  a4 + b4 ³ 2. 7. Cho a + b ³ 1 Chứng minh: + ³2 2 1a b2  Lời giải:  I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1.  Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 (*)  (*) Û + +æ ö- ³ç ÷è ø33 3a b a b02 2 Û ( )( )+ - ³23a b a b 08. ĐPCM. 2.  Chứng minh: + +£ 2 2a b a b2 2 («)  ÷ a + b £ 0 , («) luôn đúng.  ÷ a + b > 0 , («) Û + + +- £2 2 2 2a b 2ab a b04 2 Û ( )- ³2a b04 , đúng.   Vậy: + +£ 2 2a b a b2 2. 3.  Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 Û ( )+ +£3 3 3a b a b8 2   Û ( )( )- - £2 23 b a a b 0 Û ( ) ( )- - + £23 b a a b 0, ĐPCM. 4.  Cho a, b > 0 . Chứng minh: + ³ +a ba bb a  («)   («) Û + ³ +a a b b a b b a Û ( ) ( )- - - ³a b a a b b 0  Û ( )( )- - ³a b a b 0 Û ( ) ( )- + ³2a b a b 0, ĐPCM. 5.  Chứng minh: Với a ³ b ³ 1:  + ³++ +2 21 1 21 ab1 a 1 b («)  Trần Sĩ Tùng  Tuyển tập Bất đẳng thức  1 PHẦN I: LUYỆN TẬP CĂN BẢN    I. Chứng minh BĐT dựa vào định nghĩa và tính chất cơ bản: 1.  Cho a, b > 0 chứng minh: + +æ ö³ ç ÷è ø33 3a b a b2 2 2.  Chứng minh: + +£ 2 2a b a b2 2 3.  Cho a + b ³ 0 chứng minh: + +³ 3 33a b a b2 2 4.  Cho a, b > 0 . Chứng minh: + ³ +a ba bb a 5.  Chứng minh: Với a ³ b ³ 1:  + ³++ +2 21 1 21 ab1 a 1 b 6.  Chứng minh: ( )+ + + ³ + +2 2 2a b c 3 2 a b c ;  a , b , c Î R 7.  Chứng minh: ( )+ + + + ³ + + +2 2 2 2 2a b c d e a b c d e 8.  Chứng minh: + + ³ + +2 2 2x y z xy yz zx 9. a. Chứng minh: + + + +³ ³a b c ab bc ca; a,b,c 03 3  b. Chứng minh: + + + +æ ö³ ç ÷è ø22 2 2a b c a b c3 3 10.  Chứng minh: + + ³ - +22 2ab c ab ac 2bc4 11.  Chứng minh: + + ³ + +2 2a b 1 ab a b 12.  Chứng minh: + + ³ - +2 2 2x y z 2xy 2xz 2yz 13.  Chứng minh: + + + ³ - + +4 4 2 2x y z 1 2xy(xy x z 1) 14. Chứng minh: Nếu a + b ³ 1 thì: + ³3 3 1a b4 15. Cho a, b, c là số đo độ dài 3 cạnh của 1 tam giác. Chứng minh:       a.  ab + bc + ca £ a2 + b2 + c2 < 2(ab + bc + ca).       b.  abc ³ (a + b – c)(a + c – b)(b + c – a)       c.  2a2b2 + 2b2c2 + 2c2a2 – a4 – b4 – c4 > 0

18 tháng 7 2015

A=4a^2b^2-(a^2+b^2-c^2)^2

=(2ab)^2-(a^2+b^2-c^2)^2

=(a^2+b^2-c^2+2ab)[(2ab-a^2-b^2+c^2)]

=[(a+b)^2-c^2]{[-[(a+b)^2-c^2]}

=-[(a+b)^2-c^2)]^2

Theo bđt tam giác ta có a+b>c=>(a+b)^2-c^2>0 => -[(a+b)^2-c^2]<0. Vậy a<0

10 tháng 8 2016

Ta có :

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a^2+b^2-2ab\right)\right]\left[\left(a^2+b^2+2ab\right)-c^2\right]\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\left(a+b+c\right)\)

Áp dụng bất đẳng thức tam giác thì ta có : 

\(b+c-a>0\)

\(a+c-b>0\)

\(a+b-c>0\)

Hiển nhiên \(a+b+c>0\)

\(A\)là tích của 4 số dương nên \(A>0.\)

Vậy \(A>0.\)

10 tháng 8 2016

=(2ab−a2−b2+c2)(2ab+a2+b2−c2)

=[c2−(a2+b2−2ab)][(a2+b2+2ab)−c2]

=[c2−(a−b)2][(a+b)2−c2]

=(b+c−a)(a+c−b)(a+b−c)(a+b+c)

Áp dụng bất đẳng thức tam giác thì ta có : 

b+c−a>0

a+c−b>0

a+b−c>0    a+b+c>0

A  A là tích của 4 số dương nên A>0.

Vậy A>0.