Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=(-\infty;-3]\cup[-4;+\infty)\)
B=(-vô cực,2) giao (5;+vô cực)
1: A hợp B=(-vô cực,2) giao [-4;+vô cực]=R
A\B=[-4;5]
2: (B\A) giao N=(-3;2) giao N=[2;+vô cực)
a) Tập \(\left\{-1;2\right\}\) chỉ gồm 2 phần tử là hai số - 1 và 2.
Tập hợp \(\left[-1;2\right]\) có vô số phần tử, là tất cả các số thực giữa -1 và 2 (kể cả -1 và 2).
Tập hợp \(\left(-1;2\right)\) có vô số phần tử, là các số thực giữa - 1 và 2 (không bao gồm -1 và 2).
Tập hợp \([-1;2)\) có vô số phần tử, là các số thực giữa - 1 và 2 (không kể 2, có bao gồm -1).
Tập hợp \((-1;2]\) có vô số phần tử, là các số thực giữa - 1 và 2 (bao gồm -1 nhưng không bao gồm 2).
b) \(A=\left\{x\in\mathbb{N}|-2\le x\le3\right\}=\left\{0;1;2;3\right\}\); \(B=\left\{x\in\mathbb{R}|-2\le x\le3\right\}=\left[-2;3\right]\)
c) \(A=\left\{x\in\mathbb{N}|x< 3\right\}=\left\{0;1;2\right\}\); \(B=\left\{x\in\mathbb{R}|x< 3\right\}=\left(-\infty;3\right)\)
Đường tròn tâm \(I\left(-5;4\right)\) bán kính \(R=2\sqrt{10}\)
Ta có: \(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2.sin\widehat{AIB}\le\frac{1}{2}R^2\)
\(\Rightarrow S_{max}\) khi \(sin\widehat{AIB}=1\Leftrightarrow AI\perp BI\Rightarrow AB=R\sqrt{2}=4\sqrt{5}\)
Khi đó \(MAIB\) là hình vuông
\(\Rightarrow IM=AB=4\sqrt{5}\)
Do M thuộc d nên tọa độ có dạng: \(M\left(m;m+5\right)\Rightarrow\overrightarrow{IM}=\left(m+5;m+1\right)\)
\(\Rightarrow\left(m+5\right)^2+\left(m+1\right)^2=80\)
\(\Leftrightarrow m^2+6m-27=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(3;8\right)\\M\left(-9;-4\right)\end{matrix}\right.\)
b/ Gọi \(P\left(a;a+5\right)\Rightarrow\overrightarrow{IP}=\left(a+5;a+1\right)\)
Ta có: \(S_{PAI}=\frac{1}{2}AI.AP=\frac{1}{2}R.\sqrt{IP^2-R^2}=3\sqrt{10}\)
\(\Leftrightarrow\sqrt{10}.\sqrt{IP^2-40}=3\sqrt{10}\)
\(\Leftrightarrow IP^2=49\Leftrightarrow\left(a+5\right)^2+\left(a+1\right)^2=49\)
\(\Leftrightarrow2a^2+12a-23=0\Rightarrow a=\frac{-6\pm\sqrt{82}}{2}\Rightarrow P...\)
1) \(x\in A\Leftrightarrow x^2\le25\Leftrightarrow-5\le x\le5\) nên \(A=\left[-5;5\right]\).
2) \(x\in B\Leftrightarrow-4< x< 5\) nên \(B=\left(-4;5\right)\)
3) \(x\in C\Leftrightarrow x\le-4\) nên \(C=\left(-\infty;-4\right)\)
a: B\A=(-1;4]
\(C_R^B=R\text{\B}=(-\infty;-1]\cup\left(6;+\infty\right)\)
b: C=(-2;4]
D={0}
\(C\cap D=(-2;4]\)