K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

Ta có : A=4+42+43+...+42020

=(4+42+43+44)+(45+46+47+48)+...+(22017+42018+42019+42020)

=4(1+4+42+43)+45(1+4+42+43)+...+42017(1+4+42+43)

=4.85+45.85+...+42017.85

=340+44.340+...+42016.340

Mà 340\(⋮\)34 nên 340+44.340+...+42016.340\(⋮\)34

hay A\(⋮\)9

Vậy A\(⋮\)9.

Ý bạn là muốn viết kí hiệu chia hết cho phải không? Bạn ấn vào hình ảnh gần giống chữ Z ngược trên thanh công cụ nhé!

7 tháng 12 2014

a, 3S= 3+ 3^2 +3^3+....+3^2014+3^2015

3S-S=(3+3^2+......+3^2015)-(S=3^0 +3^1 +3^2 + . . . +3^2014)

2S=3^2015-3^0

b,Đề bị sai hay sao????.Thui để sau sẽ có người giúp cậu.Bye Bye!!!!!!!

9 tháng 12 2014

Tui trả lời câu b nè:

S=(3+3^2+3^4)+...+(3^2012+3^2013+3^2014)

Vì máy tính ko viết được dấu nhân nên tui nói bằng lời còn bạn tự kiểm tra nha

Các  tổng trên chia hết cho 7 nên S chia hết cho 7

Đảm bảo là đúng!!! :)

20 tháng 11 2015

tick mình đi mình giải choBlog.Uhm.vN

20 tháng 11 2015

thu huyền tike nói nhưng có làm đâu

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

31 tháng 8 2018

\(A=4+4^2+4^3+...+4^{99}+4^{100}\)

\(A=4\cdot\left(1+4\right)+4^3\cdot\left(1+4\right)+...+4^{99}\cdot\left(1+4\right)\)

\(A=4\cdot5+4^3\cdot5+...+4^{99}\cdot5\)

\(A=5\cdot\left(4+4^3+...+4^{99}\right)⋮5\left(đpcm\right)\)

7 tháng 10 2019

1) Chứng tỏ:

a) ab + ba chia hết cho 11.

Ta có: ab + ba = 10a + b + 10b + a

                        = 11a + 11b

                        = 11( a + b )

Vì 11( a + b ) chia hết cho 11 nên ab + ba chia hết cho 11 ( đpcm )

b) ab - ba chia hết cho 9.

Ta có: ab - ba = 10a + b - (10b + a)

                       = 10a + b - 10b - a

                       = 9a - 9b

                       = 9( a - b )

Vì 9( a - b ) chia hết cho 9 nên ab - ba chia hết cho 9.

2) Chứng tỏ:

a) Nếu ( ab + cd ) chia hết cho 99 thì abcd chia hết cho 99.

Ta có:  ab + cd chia hết cho 99

=> 99ab + ab + cd chia hết cho 99.

=> 100ab + cd chia hết cho 99.

=> abcd chia hết cho 99 ( đpcm )

b) Nếu ( abc + def ) chia hết cho 37 thì abcdef chia hết cho 37.

Ta có: abcdef = 1000abc + def = 999abc + abc + def = 37.27abc + (abc + def

Vì 37.27abc chia hết cho 37 nên nếu abc def chia hết cho 37 thì abcdef chia hết cho 37.

~ Huhu, cho mình xin lỗi, phần 3 mình không có thời gian để làm TwT ~