K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

\(A=3+3^2+3^3+...3^{2006}\)

\(3A=3^2+3^3+...+3^{2007}\)

\(3A-A=\left(3^2-3^2\right)+....+\left(3^{2006}-3^{2006}\right)+3^{2007}-3\)

\(2A=3^{2007}-3\Rightarrow2A+3=3^{2007}-3+3=3^{2007}=3^x\)

Vậy x = 2007 

28 tháng 2 2016

A=3+3^2+....+3^2006

=>3A=3^2+3^3+....+3^2007

=>3A-A=(3^2+3^3+....+3^2007)-(3+3^2+....+3^2006)

=>2A=3^2007-3

khi đó 2A+3=3^2007-3+3=3^2007=3^x

=>x=2007

22 tháng 10 2017

3A=\(3^2+3^3+3^4+...+3^{2007}\)

3A-A=2A=\(3^{2007}-3\)

A=\(\frac{3^{2007}-3}{2}\)

b.

2A+3=3^x

3^2007-3+3=3^x

3^2007=3^x

vay x=2007

22 tháng 10 2017

ta có : 3A=32+33+...+32007

3A-A=32+33+34+....+32007-3-32-33-...-32006

2A=32007-3

A=\(\frac{3^{2007}-3}{2}\)

b,

2A+3=3x

<=>32007-3+3=3x

<=> 32007=32007

<=> x = 2007

vậy x =2007

20 tháng 1 2020

Câu hỏi của Yuki Yudai - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

20 tháng 1 2020

Ta có:

      A=\(3^1+3^2+....+3^{2006}\)

=>3A=\(3^2+3^3+3^4+...+3^{2007}\)

=>3A-A=\(\left(3^2+3^3+...+3^{2007}\right)-\left(3^1+3^2+...+3^{2006}\right)\)

2A=\(3^{2007}-3\)

=>2A+3=\(3^x\)

<=>\(3^{2007}-3+3\)=\(3^x\)

<=>\(3^{2007}=3^x\)

=>x=2007

Vậy x=2007 thì...

22 tháng 5 2016

a)3A=3(3+ 32 + 33 + ... + 32006)

3A=32+33+...+32007

3A-A=(32+33+...+32007)-(3+ 32 + 33 + ... + 32006)

2A=32007-3

A=\(\frac{3^{2007}-3}{2}\)

b)2A+3=3x

thay 2A=32007-3 vào ta được

<=>32007-3+3=3x

<=>32007=3x

<=>x=2007

22 tháng 5 2016

\(3A=3^2+3^3+3^4+...+3^{2007}\)

\(3A-A=2A=3^{2007}-3\)

\(A=\frac{3^{2007}-3}{2}\)

28 tháng 12 2021

a,A=3+32+33+34+...+31003A=32+33+34+35+31013A−A=2A=3101−3⇒2A+3=3101=34.25+1⇒n=25

28 tháng 12 2021
Có ai biết câu b ko Ơ ^ Ơ
14 tháng 8 2020

a) A = 3 + 32 + 33 +  ... + 32006

=> 3A = 32 + 33 + 34 + ... + 32007

Lấy 3A trừ A theo vế ta có : 

3A - A = (32 + 33 + 34 + ... + 32007) - (3 + 32 + 33 +  ... + 32006)

=> 2A = 32007 - 3 

=> A = (32007 - 3) : 2

b) Sửa đề : 2A + 3 = 3x

=> 32007 - 3 + 3 = 3x

=> 3x = 32007

=> x = 2007

30 tháng 10 2016

3A - A = (32 + 33 + 34 + ... + 32007) - (3 + 32 + 33 + ... + 32006)

2A = 32007 - 3\(\Rightarrow\hept{\begin{cases}A=\frac{3^{2007}-3}{2}\\2A+3=3^{2007}\Rightarrow x=2007\end{cases}}\)

30 tháng 10 2016

\(A=3+3^2+3^3+...+3^{2016}\)

\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{2016}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2017}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+3^{2016}\right)\)

\(\Rightarrow2A=-3+3^{2017}\)

\(\Rightarrow A=\frac{3+3^{2017}}{2}\)

b) \(2A+3=-3+3-3^{2017}=3^{2017}=3^x\)

\(\Rightarrow x=2017\)