K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)

Áp dụng tc dtsbn:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)

8 tháng 5 2019

giúp được mình ,mình giúp bạn!

ok

7 tháng 12 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2b+2c+2a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b=3a-c\)\(\dfrac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c=3b-a\)

\(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a=3c-b\)

\(P=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{2a.2b.2c}=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{8abc}\)

2 tháng 3 2016

TFBOYS 

Tứ diệp thảo

cỏ bốn lá

Vương Tuấn Khải :9/11/1999 (9x)

Vương Nguyên :8/11/2000(10x)

Dịch Dương Thiên Tỉ :28/11/2000(10x)

The Fighting Boys

Hẹn ước 10 năm 

Karry biệt danh là : Nam thần karry ,Tiểu bàng giải , Cua nhỏ , anh đao .................

Roy biệt danh là: Tiểu thang viên , trôi nhi , nguyên nhi ,...........

Jackson biệt danh là : Thiên Chỉ Hạc , Thiên Thiên , Học bá , hạc nhỏ , cục bông , đùi gà ,.............

Mình là : fan KT

14 tháng 8 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\left[\dfrac{\left(bk+b\right)}{\left(dk+d\right)}\right]^2=\left[\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\dfrac{b^2}{d^2}\)

Vậy...

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)

Vậy...

15 tháng 8 2017

Cảm ơn nhayeuhihihahaokvui. Mấy bài tiếp theo bạn giải được không. Giúp mik với