K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Ta có: A= 3+32+33+…+399+3100.

   = (3+32) + (33+34) +…+399+3100.

   =3(1+3) + 33(1+3) + … + 399(1+3)

   =3.4 + 33.4 + … + 399.4

   =4(3 + 33 + … +399)

=> A = 4(3 + 33 + … +399)

Vì A có một ước là 4 nên A chia hết cho 4.

19 tháng 9 2017

Ta có : A = 3 + 32 + 33 + 34 + ..... + 399 + 3100 

=> A = (3 + 32) + (33 + 34) + ..... + (399 + 3100)

=> A = 3(1 + 3) + 33(1 + 3) + ...... + 399(1 + 3)

=> A = 3.4 + 33.4 + .... + 399.4

=> A = 4(3 + 33 + 35 + ..... + 399

Mà (3 + 33 + 35 + ..... + 399) là số nguyên 

Vậy : A = 4(3 + 33 + 35 + ..... + 399) chia hết cho 4 . 

4 tháng 10 2016

a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)

\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)

\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)

Vậy A chia hết cho 4     ĐPCM

b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)

\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)

Vậy A chia hết cho 40      ĐPCM

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

em sin lỗi em mới lớp 5

12 tháng 1 2016

ta có 1^3 +2^3+3^3+...+100^3=(1+2+3+4+...+100)^2 \(\Rightarrow\) A chia hết cho B (sách toán 6 tập 1 có đấy)

Tick mk nhé

1 tháng 9 2017

mk biết làm câu a thôi :(

1 tháng 9 2017

mình cũng chỉ làm được câu a thôi. hì hì

6 tháng 9 2016

\(A=3+3^2+3^3+.....+3^{99}+3^{100}\)

\(A=3.1+3.3+3^3.1+3^3.3+....+3^{98}.1+3^{98}.3\)

\(A=3.\left(3+1\right)+3^3.\left(3+1\right)+......+3^{98}.\left(3+1\right)\)

\(A=3.4+3^3.4+....+3^{98}.4\)

\(A=4.\left(3+3^3+....+3^{98}\right)\) Chia hết cho 4 

6 tháng 9 2016

Vào http://olm.vn/hoi-dap/question/257085.html đi bn mình đánh mỏi tay lắm !