Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=23+24+...+221
2A-A=221-22
A=221-22
221-22=(24)5.2-4=(..........6).2-4=(..............2)-4=..............8
Vì có chữ số tận cùng là 8 nên ko phải là số chính phương
tick nha
A=3+32+33+34+...+3100
\(\Rightarrow3A=3^2+3^3+3^5+...+3^{101}\)
\(\Rightarrow3A-A=2A=3^{101}-3\)
\(\Rightarrow A=\left(3^{101}-3\right):2\)
\(\Rightarrow A=\left(3^{4.25}.3^1-3\right):2\)
\(\Rightarrow A=\left[\left(...1\right).3-3\right]:2\)
\(A=\left[\left(...3\right)-3\right]:2\)
\(A=\left(...0\right):2=...5\)cũng có thể là số chính phương chứ ?
ta có: 3mũ 2+4mũ 2= 9+16=25=5mũ2
vậy 3mũ2+4mũ2 là số chính phương
cứ như vậy mà làm nhé mình ko còn nhiều thời gian t cho mình với
A=3+32+33+34+...+3100
=3+32(1+3+32+...+398)
=3+9(1+3+32+...+398) chia hết cho 3 nhưng không chia hết cho 9
=>A không phải số chính phương
=>đpcm
A=3+32+33+34+...+3100
=3+32(1+3+32+...+398)
=3+9(1+3+32+...+398) chia hết cho 3 nhưng không chia hết cho 9
=>A không phải số chính phương
=>đpcm
bài này trong tương tự ấy
Đây là chút lí thuyết về c/s tận cùng của 1 lũy thừa cơ số 3:
+, 3^4k = ...1
+, 3^(4k+1) = ....3
+, 3^(4k+2)=....9
+, 3^(4k+3) = ....7
Một số cphương thì ko có tận cùng là 2,3,7,8
Suy ra ta phân tích A như sau:
A = (1+3^4+...+3^100)+(3+3^5+...+3^101)+(3^2+3^6+...+3^102)+(3^3+...+3^99)
Suy ra c/s tận cùng của A chính là c/s tận cùng của:
1.101+3.101+9.101+7.100=2013
Suy ra A có c/s tận cùng là 3
Suy ra A ko phải số cphương
a; Ta có A = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1 + 8 + 27 + 64 + 125 = 225 = 15^2
Vì 225 là số chính phương => A là số chính phương
b; B = 3^0 + 3^1 + 3^2 + 3^3 + 3^4 = 1 + 3 + 9 + 27 + 81 = 121 = 11 ^2
VÌ 121 là số chính phương => B là số chính phương
\(A=4+\left(2^2+2^3+2^4+...+2^{20}\right)\)
\(A-4=2^2+2^3+2^4+...+2^{20}\)
\(2\left(A-4\right)=2^3+2^4+2^5+...+2^{21}\)
\(A-4=2\left(A-4\right)-\left(A-4\right)=\left(2^3+2^4+2^5+...+2^{21}\right)-\left(2^2+2^3+2^4+...+2^{20}\right)\)
\(A-4=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{20}-2^{20}\right)+\left(2^{21}-2^2\right)\)
\(A-4=\left(2^{21}-4\right)\)
\(A=\left(2^{21}-4+4\right)\)
\(A=2^{21}\)