Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+.........+(2^59+2^60)
A=2.(2+1)+2^3.(2+1)+..........+2^59(2+1)
A=2.3+2.2^3+........+2^59.3
A=(2+2^3+.......+2^59).3
Vậy A chia hết cho 3
- Chia hết cho 7:làm như trên (ghép 3 số)
- Chia hết cho 15:làm như trên (ghép 4 số)
Nhớ tích đúng cho mình nha
* Ta có: A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
= \(\left(2+2^2\right)+\left(2+2^2\right)\times2^2+...+\left(2+2^2\right)\times2^{58}\)
= \(6+6\times2^2+...+6\times2^{58}\)
= \(6\times\left(1+2^2+...+2^{58}\right)\)
= \(2\times3\times\left(1+2^2+...+2^{58}\right)\) chia hết cho 3
=> A chia hết cho 3
* Ta có: A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
= \(\left(2+2^2+2^3\right)+...+\left(2+2^2+2^3\right)\times2^{57}\)
= \(14+...+14\times2^{57}\)
= \(14\times\left(1+...+2^{57}\right)\)
= \(2\times7\times\left(1+...+2^{57}\right)\) chia hết cho 7
=> A chia hết cho 7
* Ta có: A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
= \(\left(2+2^2+2^3+2^4\right)+...+\left(2+2^2+2^3+2^4\right)\times2^{56}\)
= \(30+...+30\times2^{56}\)
= \(30\times\left(1+...+2^{56}\right)\)
= \(2\times15\times\left(1+...+2^{56}\right)\) chia hết cho 15
=> A chia hết cho 15
Nhấn đúng cho mk nha!!!!!
Ta có :
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3)
A=(2+2^5+...+2^57)*15 chia het cho 15
CM:
A chia hết cho 21
=> A chia hết cho 3 và 7
Ta có
A=2(1+2)+2^3(1+2)+..............+2^59(1...
A=3(2+2^3+2^5+........+2^59)chia hết cho 3
Ta có :
A=2(1+2+2^2)+2^4(1+2+2^2)+...........+2...
A=7(2+2^4+2^7+..........+2^58)
=> A chia hết cho 3 và 7=> A chia hết
Vậy A chia hết cho 21 và 15
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...
A = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57} +2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3\right)+2^5.\left(1+2+2^2+2^3\right)+..2^{57}.\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15.\left(2+2^5+...+2^{57}\right)\text{chia hết cho 15}\)
\(=5.3.\left(2+2^5+...+2^{57}\right)\text{ chia hết cho 5}\left(1\right)\)
A = \(2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{56}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{56}.31\)
\(=31.\left(2+2^6+...+2^{56}\right)\text{ chia hết cho 31}\left(2\right)\)
Từ (1) và (2) => A chia hết cho 5.31
B = 1 + A nên B chia 5,31 và 15 đều dư 1.
\(A=2\left(2+1\right)+2^3\left(2+1\right)+2^5\left(1+2\right)+.....+2^{59}\left(2+1\right)\)
\(=2.3+2^3.3+2^5.3+.....+2^{59}.3\)
Vậy \(A⋮3\)
A=2+2^2+2^3+...+2^60
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=6+2^2.(2+2^2)+...+2^58.(2+2^2)
A=6+2^2.6+...+2^58.6
A=6.(1+2^2+...+26^58)
Vì 6\(⋮\)6
=>6.(1+2^2+...+2^58) \(⋮\)6
=>A\(⋮\)6
Vậy A chia hết cho 6