K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

1)Cho a,b,c >0

Chứng minh  bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)

2) Cho a,b,c>0 1/a + 1/b + 1/c =1

Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2

Đọc tiếp...

10 tháng 12 2021

Có \(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)

\(b\sqrt{1-c^2}=\sqrt{b^2\left(1-c^2\right)}\le\dfrac{b^2+1-c^2}{2}\)

\(c\sqrt{1-a^2}=\sqrt{c^2\left(1-a^2\right)}\le\dfrac{c^2+1-a^2}{2}\)

=> \(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\le\dfrac{3}{2}\)

Dấu "=" <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\)

<=> \(a^2+b^2+c^2=\dfrac{3}{2}\)

26 tháng 6 2018

Ta có\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=1\) 

Thay 1=ab+bc+ca vào, ta có 

\(a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}{\left(a+b\right)\left(a+c\right)}}=a\left(b+c\right)\)

Tương tự rồi cộng lại, ta có 

A=2(ab+bc+ca)=2

^_^

19 tháng 6 2023

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

19 tháng 6 2023

câu (b) cho đa thức P (x) = cái gì?

21 tháng 9 2018

từ giả thiết ta có

a+b+c=0

<=>  a=-(b+c0

         a2=b2  +c2 +2bc

tương tự   b2=a2+c2+2ac

                c2=a2+b2+2ab

thay vào Q ta đc

\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)

\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)

\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)

\(Q=\frac{-b-a-c}{2abc}\)

\(Q=\frac{-\left(a+b+c\right)}{2abc}\)

\(Q=0\)

Vậy với a,b,c khác 0, a+b+c=0 thì Q=0

30 tháng 10 2020

\(\hept{\begin{cases}a+b+c=2\\a^2+b^2+c^2=18\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\\a^2+b^2+c^2=18\end{cases}}\Rightarrow ab+bc+ca=-7\)

Ta có: \(a+b+c=2\Leftrightarrow c-1=1-a-b\Rightarrow ab+c-1=ab-a-b+1=\left(a-1\right)\left(b-1\right)\Rightarrow\frac{1}{ab+c-1}=\frac{1}{\left(a-1\right)\left(b-1\right)}\)Tương tự, ta được: \(\frac{1}{bc+a-1}=\frac{1}{\left(b-1\right)\left(c-1\right)}\)\(\frac{1}{ca+b-1}=\frac{1}{\left(c-1\right)\left(a-1\right)}\)

Do đó \(A=\frac{1}{\left(a-1\right)\left(b-1\right)}+\frac{1}{\left(b-1\right)\left(c-1\right)}+\frac{1}{\left(c-1\right)\left(a-1\right)}=\frac{a+b+c-3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=\frac{-1}{abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1}=\frac{-1}{-1+7+2-1}=-\frac{1}{7}\)