Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
a) Có A=2+22+23+24+...+2100
= 2.(1+2+4+8)+25.(1+2+4+8)+29(1+2+4+8)+...+296.(1+2+4+8)
=2.15+25.15+29.15+...+296.15
=15(2+25+29+...+296)
=> A \(⋮\) 15
b)
A=2+22+23+.....+2100
= (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)
= 1.30 + 24.30 + ..... + 296.30
= 30.(1+34+...+296)
=>A\(⋮\) 30 < = > A \(⋮\) 10
< = >A có tận cùng là 0
a) Nhóm 4 số liên tiếp vào rồi chứng minh được
b) A = 2201 - 2 = (...2) - 2 = (...0) có chữ số tận cùng là 0
Câu a và câu b bài 2 xem Câu hỏi tương tự
Bài 2 câu c :
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 )
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0
=> Số tận cùng của A = 0.
Bài 1 để nghiên cứu
A = (2 + 22 + 23 + 24) + ...+ (296 + 297 + 299 + 2100) ( Có 100 :4 = 25 nhóm)
A = 2.(1 + 2 + 22 + 23) + ...+ 296.(1 + 2 + 22 + 23) = 2.15 + ...+ 296.15 = (2 + 25 + ...+ 296).15 chia hết cho 15
=> A chia hết cho 15 => A chia hết cho 3
Nhận xét A luôn chia hết cho 2 . Mà A chia hết cho 15 => A chia hết cho 5
Vậy A chia hết cho cả 2 và 5 => A có tận cùng là chữ số 0
A x 3 = 3 + 32 + 33+... + 312
A x 3 - A = 312 - 1
A x 2 = 312 - 1 = 531441 - 1 = 531440
A = 531440 : 2 = 265720
vậy A chia hết cho 5 và tận cùng của A bằng 0
a) = (1+3+32+33)+...+(38+39+310+311)
= (1+3+32+33)+(1.34....38)
=(1+3+32+33)+(1.34....38)
=40 +( 1.34.....38)
Vì 40 chia hết cho 5 => 40 + (1.34....38)
=> A chia hết cho 5
a) Ta có: \(A=4+4^2+4^3+....+4^{24}\)
\(\Rightarrow A=\left(4+4^2+4^3\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(\Rightarrow A=4.\left(1+4+4^2\right)+....+4^{22}.\left(1+4+4^2\right)\)
\(\Rightarrow A=21.\left(4+....+4^{22}\right)⋮21\)
Vậy \(A⋮21\)
b) Tự làm
Ta có:
A=2 + 22 + 23 +...+ 2100
=>2A=22 + 23 +...+ 2101
=>2A-A=(22 + 23 +...+ 2101)-(2+22+...+2100)
=>A=2101-2
em không hiểu anh làm câu b chưa