Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=\(\frac{4^{39}-1}{3}\)
b)lấy 4^39 -1 chia cho 15
\(4^{10}\)đồng dư vs 1 theo mod 15
4^30 đồng dư với 1 theo mod 15
4^39 đồng sư với 4 theo mod 15
4^39-1 đồng dư với 3 theo mod 15
\(\Rightarrow\)4^39-1=15k+3
S=\(\frac{4^{39}-1}{3}=\frac{15k+3}{3}=5k+1\)
c)5:21 dư 5
Cristiano Ronaldo ko thấy đề hỏi c/m đó hay sao mà còn hỏi
Bạn vô đây tham khảo nha Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
A=2+22+23+...+260
A=(2+22+23)+...+(258+259+260)
A=12.1+...+257.(2+22+23)
A=12.1+...+257.12
A=12.(1+...+257)chia hết cho 3 vì 12 chia hết cho 3
tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm
Bài 1:
Ta có: a chia 36 dư 12
⇔a=36k+12
=4(9k+3)⋮4
Ta có: a=36k+12
=36k+9+3
Ta có: 36k+9=9(k+4)⋮9
3\(⋮̸\)9
Do đó: 36k+9+3\(⋮̸\)9(dấu hiệu chia hết của một tổng)
Bài 2:
a) Gọi ba số tự nhiên liên tiếp là a; a+1; a+2
Tổng của ba số tự nhiên liên tiếp là:
a+(a+1)+(a+2)
=a+a+1+a+2
=3a+3
=3(a+1)⋮3(đpcm)
b) Gọi bốn số tự nhiên liên tiếp là a; a+1; a+2; a+3
Tổng của bốn số tự nhiên liên tiếp là:
a+(a+1)+(a+2)+(a+3)
=a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2
Ta có: 4(a+1)⋮4
2\(⋮̸\)4
Do đó: 4(a+1)+2\(⋮̸\)4(dấu hiệu chia hết của một tổng)
hay Tổng của bốn số tự nhiên liên tiếp không chia hết cho 4(đpcm)
Bài 3:
Ta có: \(A=4+2^2+2^3+2^4+...+2^{20}\)
\(\Rightarrow2\cdot A=8+2^3+2^4+2^5+...+2^{21}\)
Do đó: \(2A-A=\left(8+2^3+2^4+2^5+...+2^{21}\right)-\left(4+2^2+2^3+2^4+...+2^{20}\right)\)
\(=8+2^3+2^4+2^5+...+2^{21}-4-2^2-2^3-2^4-...-2^{20}\)
\(\Rightarrow A=8+2^{21}-\left(4+2^2\right)\)
\(=8+2^{21}-4-2^2\)
\(=2^{21}+8-4-4=2^{21}\)
Vậy: A là một lũy thừa của 2(đpcm)
Bài 1:
Khi a : 36 dư 12 => a = 36k +12
=> a = 4(9k + 3) chia hết cho 4
Ta thấy 4 không chia hết cho 9
9k chia hết 9 =>(9k + 3) không chia hết cho 9 => a không chia hết cho 9
Bài 2:
a) Gọi 3 số tự nhiên liên tiếp là a;a+1;+2
ta có:a+(a+1)+(a+2)=3a+3=3.(a+1) chia hết cho 3
b) Làm tương tự như câu a
Bài 3:
A = 4 + 22 + 23 + 24 + ..... + 220
2A = 8 + 23 + 24 + .... + 220 + 221
Suy ra : 2A - A = 221 + 8 - ( 4 + 22 )
Vậy A = 221
a: \(A=1+2+2^2+...+2^{41}\)
=>\(2A=2+2^2+2^3+...+2^{42}\)
=>\(2A-A=2^{42}-1\)
=>\(A=2^{42}-1\)
b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{40}\right)⋮3\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)
\(=7\left(1+2^3+...+2^{39}\right)⋮7\)