K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

ta có:1/2^2=1/4
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
...
1/100^2<1/99.100=1/99-1/100
=> A=1/2^2+1/3^2+1/4^2+.....+1/100^2<1/4+1/2-1/3+1/3-1/4+...+1/99-1/100
<1/4+1/2-1/100<1/2

24 tháng 4 2019

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}\)

\(< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{99\cdot100}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\)

\(< \frac{1}{2}-\frac{1}{100}\)

\(< \frac{1}{2}\)

18 tháng 5 2017

Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....................+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+................+\dfrac{1}{99.100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)

\(\Rightarrow A< 1\) \(\rightarrowđpcm\)

18 tháng 5 2017

Ta có

\(\dfrac{1}{2^2}< \dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(.........\)

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

Cộng theo vế ta có:

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}< 1\)

Vậy \(A< 1\left(dpcm\right)\)

25 tháng 5 2016

A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

A <\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

A<\(1-\frac{1}{n}\)=\(\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}< 1\)

Vậy A < 1

25 tháng 5 2016

Ta có:
1/22 < 1/1.2
1/32 < 1/2.3
1/42 < 1/3.4
..................
=> 1/n2 < 1/n(n-1)
=> 1/22 + 1/32 + 1/42 + ... + 1/n2 < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/n(n-1)
=> A < 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/n-1 + 1/n
=> A < 1 - 1/n
Vơi n thuộc N* => 1 - 1/n < 1 ( vì 1/n lúc đó lớn hơn 0 )
=> A < 1 - 1/n < 1
đpcm

27 tháng 2 2019

\(A>\frac{1}{1.2}+\frac{1}{3.2}+\frac{1}{4.3}+..+\frac{1}{9.10}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}>1\)

=> A>1

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:
a.

$A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

b.

Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$

Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$

Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$

$=2+7(2^2+2^5+...+2^{98})$

$\Rightarrow A$ không chia hết cho 7

$\Rightarrow A$ không chia hết cho 14.