Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)
Đặt B = 2017 => B + 1 = 2018
Khi B bằng:
\(B=\sqrt{1+B^2+\frac{B}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{\left(B+1\right)^2+B^2\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{B^2\left(B+1\right)^2+2B\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\sqrt{\frac{\left[B\left(B+1\right)+1\right]^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)
\(B=\frac{B^2+B+1}{B+1}+\frac{B}{B+1}\left(\text{vi}:a>0\right)\)
\(B=\frac{B^2+2B+1}{B+1}\)
\(B=\frac{\left(B+1\right)^2}{B+1}\)
\(B=B+1\left(\text{vi}:a>0\Rightarrow B+1>0\right)\)
\(B=2017+1\left(\text{vi}:B=2017\right)\)
\(\Rightarrow B=2018\)
Ta có: \(A=a_1+a_2+a_2+...+a_{2017}=2019^{2018}=3^{2018}.673^{2018}\)
\(\Rightarrow A⋮3\). (1)
Lai có \(B-A=(a_1^3+a_2^3+...+a_{2017}^3)-\left(a_1+a_2+...+a_{2017}\right)\)
\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_{2017}^3-a_{2017}\right)\)
Mat khac \(a_i^3-a_i=\left(a_i-1\right).a_i.\left(a_i+1\right)⋮3\) \(\left(1\le i\le2017\right)\)
Vậy từ đó ta suy ra \(B-A⋮3\) (2)
\(\left(1\right);\left(2\right)\Rightarrow B⋮3\)
một số mũ 2 đều lớn hơn hoặc 0
mà cả 3 số cộng lại bằng 1
=> có 2 số bằng 0 và 1 số bằng 1 mới cho kết quả bằng 1
mà số 0 mũ b.n cx bằng 0, số 1 mũ b.n cx bằng 1
=> a2017+b2018+c2019=1
Chữa đề \(\frac{2017}{4038}< A< \frac{2017}{2018}\)
Ta có: \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Leftrightarrow A< 1-\frac{1}{2018}=\frac{2017}{2018}\)(1)
Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{2019}=\frac{2017}{4038}\)(2)
Từ (1) và (2) => đpcm