K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

Ta có: a2+b2+1≥ab+a+b

<=>2a2+2b2+2≥2ab+2a+2b

<=>(a2−2ab+b2)+(a2−2a+1)+(b2−2b+1)≥0

<=>(a−b)2+(a−1)2+(b−1)2≥0 ( Luôn đúng với V a,b)

Vậy  a2+b2+1≥ab+a+b

4 tháng 1 2019

ae ơi đề bài lại như này nhé chứng minh a 1 + a2 +....+a99 <1

4 tháng 1 2019

\(a_k=\frac{2k+1}{k^2\left(k+1\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{\left(k+1\right)^2}{k^2\left(k+1\right)^2}-\frac{k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)

\(S=\frac{1}{1^2}-\frac{1}{\left(1+1\right)^2}+\frac{1}{2^2}-\frac{1}{\left(2+1\right)^2}+\frac{1}{3^2}-\frac{1}{\left(3+1\right)^2}+...+\frac{1}{99^2}-\frac{1}{\left(99+1\right)^2}\)

\(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}< 1\) ( đpcm ) 

...