K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2022

Ta có : a2 + 2ab + b2 + b2 - 4b +4 = 0
<=> ( a + b )2 + ( b - 2 )2 = 0  

mà: ( a + b )2≥0 ∀a,b

       ( b - 2 )2 ≥0 ∀​b

Dấu "=" xảy ra khi :

a + b =0  
b - 2 =0
<=> a + 2 =0 <=> a = -2
       b =2

Thay a = -2 ; b =2 vào ta có:

M= 22 +7.2.2 + \(\dfrac{52}{-2-2}\) 

M= 4 +28- \(\dfrac{52}{4}\) 
M= 4 +28 - 13 = 19

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

15 tháng 9 2019

"với hệ số nguyên"? Bạn có thể giải thích một chút không?

18 tháng 8 2019

Cauchy Schwars 

\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)

18 tháng 8 2019

\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)

Vay \(M_{min}=9\)

25 tháng 10 2020

3) Ta có: \(A=3x^2-6x+1\)

\(=3\left(x^2-2x+\frac{1}{3}\right)\)

\(=3\left(x^2-2x+1-\frac{2}{3}\right)\)

\(=3\left(x-1\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x-1\right)^2-2\ge-2\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

Vậy: Giá trị nhỏ nhất của biểu thức \(A=3x^2-6x+1\) là -2 khi x=1

4) Sửa đề: \(\left(a+2\right)^2-\left(a-2\right)^2\)

Ta có: \(\left(a+2\right)^2-\left(a-2\right)^2\)

\(=\left(a+2-a+2\right)\left(a+2+a-2\right)\)

\(=4\cdot2a⋮4\)(đpcm)