Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tưởng có tính chất rồi chứ nhỉ:
a : b dư m
c : b dư n
=> a.c : b dư m.n
Áp dụng tính chất trên ta có:
a.b chia 3 dư 1.2
=> ab chia 3 dư 2
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
theo bài ra ta có:
a=3q+1(qcn)
b=3k+2(kcn)
ab=(3q+1)(3k+2)=9qk+6q+3k+2=3(3qk+2q+k)+2
ta thấy:3(3qk+2q+k)chia hết cho 3
2 không chia hết cho 3 và 2<3
từ 2 điều trên suy ra ab chia cho 3 dư 2 (dpcm)
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
Theo bài ra ta có :
a = 3q + 1 ( qen )
b = 3k + 2 ( ken )
ab = ( 3q + 1 ) ( 3k + 2 ) = 9qk + 6q + 3k + 2 = 3 ( 3qk + 2q + k )
ta thấy : 3 ( 3qk + 2q + k ) chia hết cho 3
2 ko chia hết cho 3 và 2 < 3
Từ 2 điều trên => ab chia 3 dư 2 ( dcpm )
Ta có:
a: 3 dư 1 => a có dạng a= 3q + 1
b : 3 dư 2 => b có dạng b = 3q2 + 2
a.b =( 3q+1 )(3q2 + 2) = 3q.q2 + 2.3q +3q2 +2
Vì 3q.q2 chia hết cho 3;
2.3.q chia hết cho 3;
3q2 chia hết cho 3;
2 chia 3 dư 2
=> ab chia cho 3 dư 2
=> ĐPCM
Do a chia 3 dư 1 nên a = 3m + 1 (k thuộc N)
Do b chia 3 dư 2 nên b = 3n + 2 (k thuộc N)
=> a.b = (3m + 1).(3n + 2)
= (3m + 1).3n + (3m + 1).2
= 9mn + 3n + 6m + 2
Vì 9mn + 3n + 6m chia hết cho 3; 2 chia 3 dư 2
=> 9mn + 3n + 6m + 2 chia 3 dư 2
=> ab chia 3 dư 2 (đpcm)
Do a chia 3 dư 1 nên a = 3m + 1 (k thuộc N)
Do b chia 3 dư 2 nên b = 3n + 2 (k thuộc N)
=> a.b = (3m + 1).(3n + 2)
= (3m + 1).3n + (3m + 1).2
= 9mn + 3n + 6m + 2
Vì 9mn + 3n + 6m chia hết cho 3; 2 chia 3 dư 2
=> 9mn + 3n + 6m + 2 chia 3 dư 2
=> ab chia 3 dư 2 (đpcm)
a: 3 dư 1 => a có dạng a= 3q + 1
b : 3 dư 2 => b có dạng b = 3q2 + 2
ab =( 3q+1 )(3q2 + 2) = 3q.q2 + 2.3q +3q2 +2
Vì 3q.q2 chia hết cho 3
2.3.q chia hết cho 3
3q2 chia hết cho 3
2 chia 3 dư 2
=> ab chia cho 3 dư 2 => ĐPCM
Ta có: a = 3 x p + 1 (p ∈ N )
Tương tự ta có: b = 3 x q + 2 (q ∈ N )
Theo bài ra ta có: a x b = (3 x p + 1) x (3 x q + 2)
Hay: a x b = 9 x p x q + 3 x q + 6 x p + 2 = 3 x (p x q + q + 2 x p) + 2
Vì: 3 x (p x q + q + 2 x p) chia hết cho 3
Suy ra: a x b chia cho 3 có số dư là 2
Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)
b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)
a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2
Vì 9 ⋮ 3 nên 9qk ⋮ 3
Vì 6 ⋮ 3 nên 6q ⋮ 3
Vì 3⋮ 3 nên 3k ⋮ 3
Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)
Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)
b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)
a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2
Vì 9 ⋮ 3 nên 9qk ⋮ 3
Vì 6 ⋮ 3 nên 6q ⋮ 3
Vì 3⋮ 3 nên 3k ⋮ 3
Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)
Các ban giupws mk nha